Suppr超能文献

受定向集水生物系统启发的纺锤形表面微观结构,增强了界面润湿性和结合强度。

Spindle-Shaped Surface Microstructure Inspired by Directional Water Collection Biosystems to Enhance Interfacial Wetting and Bonding Strength.

机构信息

School of Mechanical Engineering, Tongji University, Shanghai 201804, China.

General Motors Global Research & Development, Warren, Michigan 48092, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 24;13(11):13760-13770. doi: 10.1021/acsami.0c21857. Epub 2021 Mar 11.

Abstract

Unique spindle microstructures with an apex angle of ∼20° bring the ability of directional water collection to various biosystems (i.e., spider silk and cactus stem). This has great potential to solve the insufficient interfacial wetting for mechanical interlocking formation between polymers and substrates. In this study, the bioinspired spindle microstructures were easily fabricated through the deposition of molten materials by a nanosecond laser with an overlap ratio of 21% between laser spots and achieved superior interfacial wetting for commercial epoxy adhesive on aluminum substrates. Detailed analyses show that there are four mechanisms responsible for the superior interfacial wettability of bioinspired spindle microstructures: the Laplace pressure difference, newly formed aluminum oxide, the capillary effect, and no extra pressure from a trapped atmosphere. Consequently, the bioinspired spindle surface microstructures achieve a maximum improvement of ∼16 and ∼39% in interfacial bonding strength before and after water soak exposure compared to the as-received condition. Moreover, the stable interfacial wettability of bioinspired spindle microstructures ensures that the improved joint strength varied little with an increase in surface roughness from ∼1.7 to ∼12.8 μm. However, the interfacial wettability of common dimple microstructures deteriorated with an increase in surface roughness, which is indicated by the decreasing rule in the quadratic polynomial function of the interfacial bonding strength as the surface roughness increases from ∼2.1 to ∼18.2 μm.

摘要

具有约 20°顶角的独特纺锤形微观结构使各种生物系统(例如蜘蛛丝和仙人掌茎)具有定向集水的能力。这对于解决聚合物与基底之间的机械互锁形成时界面润湿性不足的问题具有很大的潜力。在这项研究中,通过纳秒激光的沉积熔融材料很容易制造出仿生机理的纺锤形微观结构,激光光斑之间的重叠率为 21%,从而实现了商用环氧树脂胶在铝基底上的优异界面润湿性。详细分析表明,仿生机理的纺锤形微观结构具有四个改善界面润湿性的机制:拉普拉斯压差、新形成的氧化铝、毛细作用和无被困气氛的额外压力。因此,与原始状态相比,仿生纺锤形表面微观结构在水浸泡暴露前后的界面结合强度分别最大提高了约 16%和 39%。此外,仿生纺锤形微观结构的稳定界面润湿性确保了改进的接头强度随表面粗糙度从约 1.7 至约 12.8μm 的增加而变化不大。然而,随着表面粗糙度从约 2.1 至约 18.2μm 的增加,普通凹坑微观结构的界面润湿性恶化,这表明界面结合强度的二次多项式函数的规则呈下降趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验