School of Mechanical Engineering, Tongji University, Cao An Road 4800, Shanghai 201804, China.
Shanghai Key Laboratory for A & D of Metallic Functional Material, Tongji University, Shanghai 200092, China.
ACS Appl Mater Interfaces. 2023 Apr 12;15(14):18427-18439. doi: 10.1021/acsami.2c22358. Epub 2023 Mar 29.
Surface topography reconstruction is extensively used to address the issue of weak bonding at the polymer-metal interface of metal-composite hybrid structure, while enhancement from this approach is seriously impaired by insufficient interface wetting. In this study, the wetting behavior of polymer on aluminum surfaces with multiscale topographies was theoretically and experimentally investigated to realize stable and complete wetting. Geometric dimensions of multiscale surface topographies have a notable impact on interfacial forces at the three-phase contact line of polymer/air/aluminum, and a competition exists between Laplace pressure and bubble pressure in dominating the wetting behavior. Laplace pressure facilitates the degassing of trapped air bubbles in grooves, bringing more robust interfacial wettability to grooves than dimples and grids. Conversely, dimples with excessive dimensions generate interfacial pores, and this intrinsic mechanism is theoretically unraveled. Moreover, different degrees of interface wetting cause variations in bonding strength of polymer-aluminum interface, which changes from ∼18% improvement to ∼17% reduction compared to original strength. Finally, groove topography perfectly achieved complete wetting between polymer and aluminum and consequently improved flexure performance by over 11% for the aluminum-carbon fiber hybrid side impact bar, which verifies the importance of complete wetting at a part scale. This study deepens the understanding of wetting behavior and clarifies the intrinsic correlation between interfacial bonding performance and surface topography.
表面形貌重构广泛应用于解决金属-复合材料混合结构中聚合物-金属界面弱结合的问题,但由于界面润湿性不足,这种方法的增强效果受到严重影响。本研究从理论和实验两方面研究了具有多尺度形貌的聚合物在铝表面的润湿行为,以实现稳定和完全润湿。多尺度表面形貌的几何尺寸对聚合物/空气/铝三相接触线处的界面力有显著影响,并且在主导润湿行为方面,拉普拉斯压力和气泡压力之间存在竞争。拉普拉斯压力有助于从凹槽中排出被困的气泡,从而使凹槽具有比凹坑和网格更强的界面润湿性。相反,过大尺寸的凹坑会产生界面孔隙,这一内在机制在理论上得到了解释。此外,不同程度的界面润湿会导致聚合物-铝界面的结合强度发生变化,与原始强度相比,其变化范围约为 18%的提高到 17%的降低。最后,凹槽形貌完美地实现了聚合物和铝之间的完全润湿,从而使铝-碳纤维混合侧面冲击杆的弯曲性能提高了 11%以上,这验证了在零件尺度上完全润湿的重要性。本研究深化了对润湿行为的理解,并阐明了界面结合性能与表面形貌之间的内在相关性。