Suppr超能文献

控制规模异质性是否能更好地解释离散选择实验中受访者的偏好细分?以美国医疗保险需求为例。

Does Controlling for Scale Heterogeneity Better Explain Respondents' Preference Segmentation in Discrete Choice Experiments? A Case Study of US Health Insurance Demand.

机构信息

Department of Economics, University of South Florida, Tampa, FL, USA.

出版信息

Med Decis Making. 2021 Jul;41(5):573-583. doi: 10.1177/0272989X21997345. Epub 2021 Mar 11.

Abstract

Analyses of preference evidence frequently confuse heterogeneity in the effects of attribute parameters (i.e., taste coefficients) and the scale parameter (i.e., variance). Standard latent class models often produce unreasonable classes with high variance and disordered coefficients because of confounding estimates of effect and scale heterogeneity. In this study, we estimated a scale-adjusted latent class model in which scale classes (heteroskedasticity) were identified using respondents' randomness in choice behavior on the internet panel (e.g., time to completion and time of day). Hence, the model distinctly explained the taste/preference variation among classes associated with individual socioeconomic characters, in which scales are adjusted. Using data from a discrete-choice experiment on US health insurance demand among single employees, the results demonstrated how incorporating behavioral data enhances the interpretation of heterogeneous effects. Once scale heterogeneity was controlled, we found substantial heterogeneity with 4 taste classes. Two of the taste classes were highly premium sensitive (economy class), coming mostly from the low-income group, and the class associated with better educational backgrounds preferred to have a better quality of coverage of health insurance plans. The third class was a highly quality-sensitive class, with a higher SES background and lower self-stated health condition. The last class was identified as stayers, who were not premium or quality sensitive. This case study demonstrates that one size does not fit all in the analysis of preference heterogeneity. The novel use of behavioral data in the latent class analysis is generalizable to a wide range of health preference studies.

摘要

偏好证据分析常常混淆属性参数(即口味系数)和尺度参数(即方差)的效应异质性。由于混淆了效应和尺度异质性的估计,标准潜在类别模型经常产生具有高方差和无序系数的不合理类别。在本研究中,我们估计了一个尺度调整的潜在类别模型,其中使用受访者在互联网面板上选择行为的随机性(例如,完成时间和一天中的时间)来识别尺度类别(异方差)。因此,该模型明确解释了与个体社会经济特征相关的类别中与个体社会经济特征相关的口味/偏好变化,在这些类别中,尺度是可以调整的。使用来自美国单身员工健康保险需求的离散选择实验数据,结果表明如何结合行为数据增强对异质效应的解释。一旦控制了尺度异质性,我们发现了 4 个口味类别存在大量异质性。其中两个口味类别对保费非常敏感(经济舱),主要来自低收入群体,而与更好的教育背景相关的类别则更倾向于拥有更好的医疗保险计划覆盖质量。第三个类别是一个高度敏感质量的类别,具有较高的 SES 背景和较低的自我报告健康状况。最后一个类别被确定为保持者,他们对保费或质量不敏感。这个案例研究表明,在偏好异质性分析中,一刀切并不适合所有人。在潜在类别分析中对行为数据的新颖使用可推广到广泛的健康偏好研究中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验