应用潜在类别分析模型研究健康偏好异质性:系统综述。

Using Latent Class Analysis to Model Preference Heterogeneity in Health: A Systematic Review.

机构信息

Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Room 690, Baltimore, MD, 21205, USA.

出版信息

Pharmacoeconomics. 2018 Feb;36(2):175-187. doi: 10.1007/s40273-017-0575-4.

Abstract

BACKGROUND

Latent class analysis (LCA) has been increasingly used to explore preference heterogeneity, but the literature has not been systematically explored and hence best practices are not understood.

OBJECTIVE

We sought to document all applications of LCA in the stated-preference literature in health and to inform future studies by identifying current norms in published applications.

METHODS

We conducted a systematic review of the MEDLINE, EMBASE, EconLit, Web of Science, and PsycINFO databases. We included stated-preference studies that used LCA to explore preference heterogeneity in healthcare or public health. Two co-authors independently evaluated titles, abstracts, and full-text articles. Abstracted key outcomes included segmentation methods, preference elicitation methods, number of attributes and levels, sample size, model selection criteria, number of classes reported, and hypotheses tests. Study data quality and validity were assessed with the Purpose, Respondents, Explanation, Findings, and Significance (PREFS) quality checklist.

RESULTS

We identified 2560 titles, 99 of which met the inclusion criteria for the review. Two-thirds of the studies focused on the preferences of patients and the general population. In total, 80% of the studies used discrete choice experiments. Studies used between three and 20 attributes, most commonly four to six. Sample size in LCAs ranged from 47 to 2068, with one-third between 100 and 300. Over 90% of the studies used latent class logit models for segmentation. Bayesian information criterion (BIC), Akaike information criterion (AIC), and log-likelihood (LL) were commonly used for model selection, and class size and interpretability were also considered in some studies. About 80% of studies reported two to three classes. The number of classes reported was not correlated with any study characteristics or study population characteristics (p > 0.05). Only 30% of the studies reported using statistical tests to detect significant variations in preferences between classes. Less than half of the studies reported that individual characteristics were included in the segmentation models, and 30% reported that post-estimation analyses were conducted to examine class characteristics. While a higher percentage of studies discussed clinical implications of the segmentation results, an increasing number of studies proposed policy recommendations based on segmentation results since 2010.

CONCLUSIONS

LCA is increasingly used to study preference heterogeneity in health and support decision-making. However, there is little consensus on best practices as its application in health is relatively new. With an increasing demand to study preference heterogeneity, guidance is needed to improve the quality of applications of segmentation methods in health to support policy development and clinical practice.

摘要

背景

潜类分析(LCA)已越来越多地用于探索偏好异质性,但该文献尚未得到系统探索,因此不了解最佳实践。

目的

我们旨在记录健康领域中表述偏好文献中 LCA 的所有应用,并通过确定已发表应用中的当前规范来为未来的研究提供信息。

方法

我们对 MEDLINE、EMBASE、EconLit、Web of Science 和 PsycINFO 数据库进行了系统回顾。我们纳入了使用 LCA 探索医疗保健或公共卫生中偏好异质性的表述偏好研究。两位合著者独立评估了标题、摘要和全文文章。摘要的关键结果包括细分方法、偏好 elicitation 方法、属性和水平的数量、样本量、模型选择标准、报告的类别数量以及假设检验。使用目的、受访者、解释、发现和意义(PREFS)质量检查表评估研究数据的质量和有效性。

结果

我们确定了 2560 个标题,其中 99 个符合综述的纳入标准。三分之二的研究侧重于患者和一般人群的偏好。总的来说,80%的研究使用离散选择实验。研究中使用的属性数量在 3 到 20 之间,最常见的是 4 到 6 个。LCA 的样本量在 47 到 2068 之间,三分之一在 100 到 300 之间。超过 90%的研究使用潜在类别逻辑模型进行细分。贝叶斯信息准则(BIC)、赤池信息量准则(AIC)和对数似然(LL)常用于模型选择,一些研究还考虑了类别大小和可解释性。大约 80%的研究报告了两到三个类别。报告的类别数量与任何研究特征或研究人群特征均无相关性(p>0.05)。只有 30%的研究报告使用统计检验来检测类别之间偏好的显著差异。不到一半的研究报告说个体特征被纳入细分模型,30%的研究报告说进行了估计后分析以检查类别特征。尽管越来越多的研究讨论了细分结果的临床意义,但自 2010 年以来,越来越多的研究基于细分结果提出了政策建议。

结论

LCA 越来越多地用于研究健康中的偏好异质性并支持决策制定。然而,由于其在健康中的应用相对较新,因此对于最佳实践还没有达成共识。随着对研究偏好异质性的需求不断增加,需要指导来提高健康中细分方法应用的质量,以支持政策制定和临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索