Li Zhen, Dankelman Jenny, De Momi Elena
NearLab, Department of Electronics, Information and Bioengineering Department (DEIB), Politecnico di Milano, Milan, Italy.
Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands.
Int J Comput Assist Radiol Surg. 2021 Apr;16(4):619-627. doi: 10.1007/s11548-021-02328-x. Epub 2021 Mar 11.
Planning a safe path for flexible catheters is one of the major challenges of endovascular catheterization. State-of-the-art methods rarely consider the catheter curvature constraint and reduced computational time of path planning which guarantees the possibility to re-plan the path during the actual operation.
In this manuscript, we propose a fast two-phase path planning approach under the robot curvature constraint. Firstly, the vascular structure is extracted and represented by vascular centerlines and corresponding vascular radii. Then, the path is searched along the vascular centerline using breadth first search (BFS) strategy and locally optimized via the genetic algorithm (GA) to satisfy the robot curvature constraint. This approach (BFS-GA) is able to respect the robot curvature constraint while keeping it close to the centerlines as much as possible. We can also reduce the optimization search space and perform parallel optimization to shorten the computational time.
We demonstrate the method's high efficiency in two-dimensional and three-dimensional space scenarios. The results showed the planner's ability to satisfy the robot curvature constraint while keeping low computational time cost compared with sampling-based methods. Path replanning in femoral arteries can reach an updating frequency at [Formula: see text]Hz.
The presented work is suited for surgical procedures demanding satisfying curvature constraints while optimizing specified criteria. It is also applicable for curvature constrained robots in narrow passages.
为柔性导管规划一条安全路径是血管内导管插入术的主要挑战之一。现有技术方法很少考虑导管曲率约束以及路径规划中减少的计算时间,而这能保证在实际操作过程中重新规划路径的可能性。
在本论文中,我们提出了一种在机器人曲率约束下的快速两阶段路径规划方法。首先,提取血管结构并用血管中心线和相应的血管半径来表示。然后,使用广度优先搜索(BFS)策略沿着血管中心线搜索路径,并通过遗传算法(GA)进行局部优化以满足机器人曲率约束。这种方法(BFS - GA)能够在尽可能靠近中心线的同时遵守机器人曲率约束。我们还可以减少优化搜索空间并进行并行优化以缩短计算时间。
我们在二维和三维空间场景中展示了该方法的高效性。结果表明,与基于采样的方法相比,该规划器有能力在保持较低计算时间成本的同时满足机器人曲率约束。股动脉中的路径重新规划可以达到[公式:见原文]赫兹的更新频率。
所提出的工作适用于要求满足曲率约束同时优化特定标准的外科手术。它也适用于狭窄通道中的曲率受限机器人。