Univ Rennes, CNRS, ISCR-UMR6226, 35000, Rennes, France.
Angew Chem Int Ed Engl. 2021 Aug 9;60(33):18006-18013. doi: 10.1002/anie.202101997. Epub 2021 May 1.
The use of secondary interactions between substrates and catalysts is a promising strategy to discover selective transition metal catalysts for atom-economy C-H bond functionalization. The most powerful catalysts are found via trial-and-error screening due to the low association constants between the substrate and the catalyst in which small stereo-electronic modifications within them can lead to very different reactivities. To circumvent these limitations and to increase the level of reactivity prediction in these important reactions, we report herein a supramolecular catalyst harnessing Zn⋅⋅⋅N interactions that binds to pyridine-like substrates as tight as it can be found in some enzymes. The distance and spatial geometry between the active site and the substrate binding site is ideal to target unprecedented meta-selective iridium-catalyzed C-H bond borylations with enzymatic Michaelis-Menten kinetics, besides unique substrate selectivity and dormant reactivity patterns.
利用底物和催化剂之间的次级相互作用是发现用于原子经济性 C-H 键功能化的选择性过渡金属催化剂的一种很有前途的策略。由于底物和催化剂之间的结合常数较低,其中它们之间的微小立体电子修饰可以导致非常不同的反应性,因此最强大的催化剂是通过反复试验筛选发现的。为了规避这些限制并提高这些重要反应中反应性预测的水平,我们在此报告了一种利用 Zn⋅⋅⋅N 相互作用的超分子催化剂,它可以像一些酶中那样紧密地结合吡啶样底物。活性位点和底物结合位点之间的距离和空间几何形状非常理想,可以针对前所未有的间选择性铱催化 C-H 键硼化反应,具有酶促米氏动力学,此外还有独特的底物选择性和休眠反应模式。