State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
J Phys Chem Lett. 2021 Mar 25;12(11):2712-2720. doi: 10.1021/acs.jpclett.1c00094. Epub 2021 Mar 11.
Recently, Wang and co-workers carried out frontier molecule orbital engineering in the design of -Cz-BNCz, a thermally activated delayed fluorescence (TADF) molecule that emits pure green light at an external quantum efficiency of 27%. To further understand the underlying molecular design principles, we employed four advanced electronic structure analysis tools. First, an absolutely localized molecular orbitals (ALMO-) based analysis indicates an antibonding combination between the highest occupied molecular orbitals (HOMOs) of the donor 3,6-di--butylcarbazole fragment and the acceptor BNCz fragment, which raises the HOMO energy and red-shifts the fluorescence emission wavelength. Second, excitation energy component analysis reveals that the S-T gap is dominated by two-electron components of the excitation energies. Third, charge transfer number analysis, which is extended to use fragment-based Hirshfeld weights, indicates that the S and T excited states of -Cz-BNCz (within time-dependent density functional theory) have notable charge transfer characters (27% for S and 12% for T). This provides a balance between a small single-triplet gap and a substantial fluorescence intensity. Last, a vibrational reorganization energy analysis pinpoints the torsional motion between the BNCz and Cz moieties of -Cz-BNCz as the source for its wider emission peak than that of -Cz-BNCz. These four types of analyses are expected to be very valuable in the study and design of other TADF and functional dye molecules.
最近,Wang 及其同事在 -Cz-BNCz 的设计中进行了前沿分子轨道工程,-Cz-BNCz 是一种热活化延迟荧光(TADF)分子,在外部量子效率为 27%时发出纯绿光。为了进一步了解潜在的分子设计原则,我们采用了四种先进的电子结构分析工具。首先,基于绝对定域分子轨道(ALMO-)的分析表明,供体 3,6-二--丁基咔唑片段和受体 BNCz 片段的最高占据分子轨道(HOMOs)之间存在反键组合,这提高了 HOMO 能量并红移了荧光发射波长。其次,激发能分量分析表明,S-T 间隙主要由激发能的双电子分量组成。第三,电荷转移数分析扩展到使用基于片段的 Hirshfeld 权重,表明 -Cz-BNCz 的 S 和 T 激发态(在时间相关密度泛函理论内)具有显著的电荷转移特性(S 为 27%,T 为 12%)。这在小单三重态间隙和较大荧光强度之间提供了平衡。最后,振动重组能分析指出,-Cz-BNCz 中 BNCz 和 Cz 部分之间的扭转运动是其发射峰比 -Cz-BNCz 更宽的原因。这四种类型的分析预计在其他 TADF 和功能染料分子的研究和设计中非常有价值。