Suppr超能文献

Triton X-100 抑制细胞色素 c 氧化酶的机制。

Mechanism of Inhibition of Cytochrome c Oxidase by Triton X-100.

机构信息

Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.

出版信息

Biochemistry (Mosc). 2021 Jan;86(1):44-58. doi: 10.1134/S0006297921010053.

Abstract

It is known that Triton X-100 (TX) reversibly inhibits activity of cytochrome c oxidase (CcO). The mechanism of inhibition is analyzed in this work. The action of TX is not directed to the reaction of CcO with cytochrome c, does not cause transition of the enzyme to the "slow" form, and is not associated with monomerization of the enzyme complex. TX completely suppresses oxygen reduction by CcO, but inhibition is prevented and partially reversed by dodecyl-β-D-maltoside (DDM), a detergent used to maintain CcO in solution. A 1/1 stoichiometry competition is shown between DDM and TX for binding to CcO, with K = 0.3 mM and affinity of DDM for the enzyme of 1.2 mM. TX interaction with the oxidized enzyme induces spectral response with maximum at 421 nm and [TX] = 0.28 mM, presumably associated with heme a. When CcO interacts with excess of H2O2 TX affects equilibrium of the oxygen intermediates of the catalytic center accelerating the F-607 → F-580 transition, inhibits generation of O by the enzyme, and, to a lesser extent, suppresses the catalase partial activity. The observed effects can be explained by inhibition of the conversion of the intermediate F-580 to the free oxidized state during the catalytic cycle. TX suppresses intraprotein electron transfer between hemes a and a during enzyme turnover. Partial peroxidase activity of CcO remains relatively resistant to TX under conditions that block oxidase reaction effectively. These features indicate an impairment of the K proton channel conductivity. We suggest that TX interacts with CcO at the Bile Acid Binding Site (BABS) that is located on the subunit I at the K-channel mouth and contacts with amphipathic regulators of CcO [Buhrow et al. (2013) Biochemistry, 52, 6995-7006]. Apparently, TX mimics the physiological ligand of BABS, whereas the DDM molecule mimics an endogenous phospholipid bound at the edge of BABS that controls effective affinity for the ligand.

摘要

已知 Triton X-100(TX)可可逆性抑制细胞色素 c 氧化酶(CcO)的活性。本文分析了抑制机制。TX 的作用不是针对 CcO 与细胞色素 c 的反应,不会导致酶转变为“慢”形式,也与酶复合物的单体化无关。TX 完全抑制 CcO 的氧还原,但去污剂十二烷基-β-D-麦芽糖苷(DDM)可预防和部分逆转抑制作用,DDM 用于维持 CcO 在溶液中的状态。DDM 和 TX 与 CcO 结合的竞争呈 1/1 化学计量比,K=0.3 mM,DDM 与酶的亲和力为 1.2 mM。TX 与氧化酶相互作用诱导光谱响应,最大波长为 421nm,[TX]=0.28 mM,可能与 heme a 有关。当 CcO 与过量的 H2O2 相互作用时,TX 会影响催化中心氧中间体的平衡,加速 F-607→F-580 的转变,抑制酶生成 O,并在较小程度上抑制过氧化氢酶的部分活性。观察到的效应可以通过抑制催化循环中中间 F-580 向游离氧化态的转化来解释。TX 抑制酶周转过程中 heme a 和 a 之间的蛋白质内电子转移。在有效阻断氧化酶反应的条件下,CcO 的部分过氧化物酶活性对 TX 相对具有抗性。这些特征表明 K 质子通道电导率受损。我们建议 TX 与 CcO 在胆汁酸结合位点(BABS)相互作用,该位点位于 K 通道口的亚基 I 上,并与 CcO 的两亲调节剂相互作用[Buhrow 等人,(2013)生物化学,52,6995-7006]。显然,TX 模拟 BABS 的生理配体,而 DDM 分子模拟结合在 BABS 边缘的内源性磷脂,控制配体的有效亲和力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验