Suppr超能文献

聚类分析方法在自动检测仪收集的荧光生物气溶胶分析中的应用。

Clustering approach for the analysis of the fluorescent bioaerosol collected by an automatic detector.

机构信息

Šiauliai Academy, Vilnius University, Šiauliai, Lithuania.

Finish Meteorological Institute, Helsinki, Finland.

出版信息

PLoS One. 2021 Mar 11;16(3):e0247284. doi: 10.1371/journal.pone.0247284. eCollection 2021.

Abstract

Automatically operating particle detection devices generate valuable data, but their use in routine aerobiology needs to be harmonized. The growing network of researchers using automatic pollen detectors has the challenge to develop new data processing systems, best suited for identification of pollen or spore from bioaerosol data obtained near-real-time. It is challenging to recognise all the particles in the atmospheric bioaerosol due to their diversity. In this study, we aimed to find the natural groupings of pollen data by using cluster analysis, with the intent to use these groupings for further interpretation of real-time bioaerosol measurements. The scattering and fluorescence data belonging to 29 types of pollen and spores were first acquired in the laboratory using Rapid-E automatic particle detector. Neural networks were used for primary data processing, and the resulting feature vectors were clustered for scattering and fluorescence modality. Scattering clusters results showed that pollen of the same plant taxa associates with the different clusters corresponding to particle shape and size properties. According to fluorescence clusters, pollen grouping highlighted the possibility to differentiate Dactylis and Secale genera in the Poaceae family. Fluorescent clusters played a more important role than scattering for separating unidentified fluorescent particles from tested pollen. The proposed clustering method aids in reducing the number of false-positive errors.

摘要

自动操作的粒子检测设备生成有价值的数据,但它们在常规空气生物学中的使用需要协调。越来越多的使用自动花粉探测器的研究人员面临着开发新的数据处理系统的挑战,这些系统最适合识别近实时获得的生物气溶胶数据中的花粉或孢子。由于大气生物气溶胶中粒子的多样性,识别所有粒子具有挑战性。在这项研究中,我们旨在通过聚类分析找到花粉数据的自然分组,目的是将这些分组用于进一步解释实时生物气溶胶测量。首先在实验室使用 Rapid-E 自动粒子探测器采集了 29 种花粉和孢子的散射和荧光数据。神经网络用于初步数据处理,将得到的特征向量按散射和荧光模式聚类。散射聚类结果表明,同一植物分类群的花粉与对应于粒子形状和大小特性的不同聚类相关联。根据荧光聚类,花粉分组突出了区分禾本科植物中的 Dactylis 和 Secale 属的可能性。荧光聚类比散射更有助于将未识别的荧光粒子与测试花粉区分开来。所提出的聚类方法有助于减少假阳性错误的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ec/7951810/03b6c7f15ac0/pone.0247284.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验