Suppr超能文献

用于II类主要组织相容性复合体呈递的肽的机器学习优化

Machine learning optimization of peptides for presentation by class II MHCs.

作者信息

Dai Zheng, Huisman Brooke D, Zeng Haoyang, Carter Brandon, Jain Siddhartha, Birnbaum Michael E, Gifford David K

机构信息

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.

Department of Computer Science and Electrical Engineering, MIT, Cambridge, MA, USA.

出版信息

Bioinformatics. 2021 Oct 11;37(19):3160-3167. doi: 10.1093/bioinformatics/btab131.

Abstract

SUMMARY

T cells play a critical role in cellular immune responses to pathogens and cancer and can be activated and expanded by Major Histocompatibility Complex (MHC)-presented antigens contained in peptide vaccines. We present a machine learning method to optimize the presentation of peptides by class II MHCs by modifying their anchor residues. Our method first learns a model of peptide affinity for a class II MHC using an ensemble of deep residual networks, and then uses the model to propose anchor residue changes to improve peptide affinity. We use a high throughput yeast display assay to show that anchor residue optimization improves peptide binding.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

T细胞在针对病原体和癌症的细胞免疫反应中发挥关键作用,并且可以被肽疫苗中包含的主要组织相容性复合体(MHC)呈递的抗原激活和扩增。我们提出了一种机器学习方法,通过修饰II类MHC的锚定残基来优化肽的呈递。我们的方法首先使用深度残差网络集成学习II类MHC的肽亲和力模型,然后使用该模型提出锚定残基变化以提高肽亲和力。我们使用高通量酵母展示试验表明,锚定残基优化可改善肽结合。

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d47/8504626/41d588e3ec42/btab131f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验