Hobohm U, Meyerhans A
European Molecular Biology Laboratory, Heidelberg, FRG.
Eur J Immunol. 1993 Jun;23(6):1271-6. doi: 10.1002/eji.1830230612.
The binding affinity between an antigenic peptide and its particular major histocompatibility complex (MHC) molecule seems to be largely determined by only a few residues. These residues have been called "anchors" because of their property of fitting into "pockets" inside the groove of the MHC molecule. To predict natural antigenic epitopes within a longer sequence, it therefore appears to be important to know the motif or pattern describing the anchors, i.e. the anchors amino acid residue preference and the distance between anchor residues. A large set of MHC class I-restricted peptides has been described. Peptide sequences vary in length and lack an obvious common sequence motif. For a list of peptides belonging to one type of MHC class I molecule, we describe a method to find the most prominent sequence motif with at least two anchor residues. Briefly, antigenic sequences are aligned, and two anchor positions are searched for, where all anchor residues share a high similarity. The alignments are scored according to the similarity of their anchor residues. We show that the motifs predicted for the MHC alleles A2.1, B27, Kb, Kd, Db are in substantial agreement with experimental data. We derive binding motifs for the MHC class I alleles HLA-A1, A11, B8, B14, H-2Ld and for the MHC class II alleles I-Ab and I-As. In some cases, higher scores were obtained by allowing a slight variation in the number of residues between anchors. Therefore, we support the view that the length of epitopes belonging to a particular class I MHC is not uniform. This method can be used to predict the natural short epitope inside longer antigenic peptides and to predict the epitopes anchor residues. Anchor motifs can be used to search for antigenic regions in sequences of infectious viruses, bacteria and parasites.
抗原肽与其特定的主要组织相容性复合体(MHC)分子之间的结合亲和力似乎在很大程度上仅由少数几个残基决定。这些残基因其能够嵌入MHC分子凹槽内的“口袋”的特性而被称为“锚定残基”。因此,要预测较长序列中的天然抗原表位,了解描述锚定残基的基序或模式(即锚定残基的氨基酸残基偏好以及锚定残基之间的距离)似乎很重要。已经描述了大量受MHC I类限制的肽。肽序列长度各异,且缺乏明显的共同序列基序。对于属于一种MHC I类分子的肽列表,我们描述了一种方法来找到至少有两个锚定残基的最突出序列基序。简而言之,将抗原序列进行比对,并搜索两个锚定位置,所有锚定残基在这些位置具有高度相似性。根据其锚定残基的相似性对比对结果进行评分。我们表明,针对MHC等位基因A2.1、B27、Kb、Kd、Db预测的基序与实验数据基本一致。我们推导出了MHC I类等位基因HLA - A1、A11、B8、B14、H - 2Ld以及MHC II类等位基因I - Ab和I - As的结合基序。在某些情况下,通过允许锚定残基之间的残基数量有轻微变化可获得更高的分数。因此,我们支持这样的观点,即属于特定I类MHC的表位长度并非一致。该方法可用于预测较长抗原肽内的天然短表位,并预测表位的锚定残基。锚定基序可用于在传染性病毒、细菌和寄生虫的序列中搜索抗原区域。