Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; and Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and Corresponding author.
Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
Funct Plant Biol. 2022 May;49(6):463-482. doi: 10.1071/FP20347.
Induction of non-photochemical quenching (NPQ) of chlorophyll fluorescence in leaves affords photoprotection to the photosynthetic apparatus when, for whatever reason, photon capture in the antennae of photosystems exceeds their capacity to utilise this excitation in photochemistry and ultimately in CO2 assimilation. Here we augment traditional monitoring of NPQ using the fast time resolution, remote and relatively non-intrusive light induced fluorescence transient (LIFT) technique (Kolber et al . 2005 ; Osmond et al . 2017 ) that allows direct measurement of functional (σ'PSII ) and optical cross-sections (a 'PSII ) of PSII in situ , and calculates the half saturation light intensity for ETR (E k ). These parameters are obtained from the saturation and relaxation phases of fluorescence transients elicited by a sequence of 270, high intensity 1 μs flashlets at controlled time intervals over a period of 30 ms in the QA flash at intervals of a few seconds. We report that although σ'PSII undergoes large transient increases after transfer from dark to strong white light (WL) it declines little in steady-state as NPQ is induced in shade- and sun-grown spinach and Arabidopsis genotypes Col , OEpsbs , pgr 5bkg , stn 7 and stn 7/8. In contrast, σ'PSII increases by ~30% when induction of NPQ in spinach is inhibited by dithiothreitol and by inhibition of NPQ in Arabidopsis npq 1, npq 4 and pgr 5. We propose this increase in σ'PSII arises as some excitation from closed PSII reaction centres is transferred to open centres when excitation partitioning to photochemistry (Y II ) and NPQ (Y NP ) declines, and is indicated by an increased excitation dissipation from closed PSII centres (Y NO , including fluorescence emission). Although E k increases following dissipation of excitation as heat when NPQ is engaged, it declines when NPQ is inhibited. Evidently photochemistry becomes more easily light saturated when excitation is transferred from closed RCIIs to open centres with larger σ'PSII . The NPQ mutant pgr 5 is an exception; E k increases markedly in strong light as electron transport QA → PQ and PQ → PSI accelerate and the PQ pool becomes strongly reduced. These novel in situ observations are discussed in the context of contemporary evidence for functional and structural changes in the photosynthetic apparatus during induction of NPQ.
非光化学猝灭(NPQ)的诱导会保护叶片中的光合作用器官,当由于任何原因,天线中的光子捕获超过其在光化学和最终在 CO2 同化中利用这种激发的能力时,就会发生这种情况。在这里,我们使用快速时间分辨率、远程和相对非侵入性的光诱导荧光瞬变(LIFT)技术(Kolber 等人,2005 年;Osmond 等人,2017 年)来增强对 NPQ 的传统监测,该技术允许直接原位测量 PSII 的功能(σ'PSII)和光学截面(a'PSII),并计算 ETR(E k)的半饱和光强度。这些参数是通过在 QA 闪光期间以受控时间间隔在 30 毫秒内用 270 个高强度 1 μs 闪光序列激发荧光瞬变的饱和和弛豫阶段获得的,每隔几秒钟在荫蔽和阳光充足的菠菜和拟南芥基因型 Col、OEpsbs、pgr 5bkg、stn 7 和 stn 7/8 中进行。我们报告说,尽管 σ'PSII 在从黑暗转移到强白光(WL)后会经历大的瞬态增加,但当在菠菜中诱导 NPQ 时,它在稳定状态下几乎没有减少,并且在 Col、OEpsbs、pgr 5bkg、stn 7 和 stn 7/8 中减少。相比之下,当菠菜中的 NPQ 抑制由二硫苏糖醇和 Arabidopsis npq 1、npq 4 和 pgr 5 抑制 NPQ 时,σ'PSII 增加约 30%。我们提出,这种 σ'PSII 的增加是由于当激发分配到光化学(Y II)和 NPQ(Y NP)减少时,一些来自关闭 PSII 反应中心的激发转移到开放中心,并且由从关闭 PSII 中心(Y NO 增加的激发耗散引起,包括荧光发射)。尽管当 NPQ 参与时,当激发作为热量耗散时,Ek 会增加,但当 NPQ 被抑制时,Ek 会下降。显然,当激发从闭合的 RCII 转移到具有较大σ'PSII 的开放中心时,光化学变得更容易光饱和。NPQ 突变体 pgr 5 是一个例外;当电子传递 QA→PQ 和 PQ→PSI 加速并且 PQ 池变得强烈还原时,Ek 在强光下显著增加。在讨论 NPQ 诱导期间光合作用器官的功能和结构变化的当代证据时,讨论了这些新的原位观察结果。