Muchhala Karan H, Jacob Joanna C, Dewey William L, Akbarali Hamid I
Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay St, Richmond, VA, 23298, USA.
Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay St, Richmond, VA, 23298, USA.
Eur J Pharmacol. 2021 May 15;899:174007. doi: 10.1016/j.ejphar.2021.174007. Epub 2021 Mar 8.
G-protein-biased agonists with reduced β-arrestin-2 activation are being investigated as safer alternatives to clinically-used opioids. β-arrestin-2 has been implicated in the mechanism of opioid-induced antinociceptive tolerance. Opioid-induced analgesic tolerance is classically considered as centrally-mediated, but recent reports implicate nociceptive dorsal root ganglia neurons as critical mediators in this process. Here, we investigated the role of β-arrestin-2 in the mechanism of opioid tolerance in dorsal root ganglia nociceptive neurons using β-arrestin-2 knockout mice and the G-protein-biased μ-opioid receptor agonist, TRV130. Whole-cell current-clamp electrophysiology experiments revealed that 15-18-h overnight exposure to 10 μM morphine in vitro induced acute tolerance in β-arrestin-2 wild-type but not knockout neurons. Furthermore, in wild-type neurons circumventing β-arrestin-2 activation by overnight treatment with 200 nM TRV130 attenuated tolerance. Similarly, acute morphine tolerance in vivo in β-arrestin-2 knockout mice was prevented in the warm-water tail-withdrawal assay. Treatment with 30 mg/kg TRV130 s.c. also inhibited acute antinociceptive tolerance in vivo in wild-type mice. Alternately, in β-arrestin-2 knockout neurons tolerance induced by 7-day in vivo exposure to 50 mg morphine pellet was conserved. Likewise, β-arrestin-2 deletion did not mitigate in vivo antinociceptive tolerance induced by 7-day exposure to 25 mg or 50 mg morphine pellet in both female or male mice, respectively. Consequently, these results indicated that β-arrestin-2 mediates acute but not chronic opioid tolerance in dorsal root ganglia neurons and to antinociception in vivo. This suggests that opioid-induced antinociceptive tolerance may develop even in the absence of β-arrestin-2 activation, and thus significantly affect the clinical utility of biased agonists.
β-抑制蛋白2激活作用减弱的G蛋白偏向性激动剂正作为临床使用阿片类药物的更安全替代品进行研究。β-抑制蛋白2与阿片类药物诱导的抗伤害感受耐受性机制有关。阿片类药物诱导的镇痛耐受性传统上被认为是中枢介导的,但最近的报告表明伤害性背根神经节神经元是这一过程中的关键介质。在此,我们使用β-抑制蛋白2基因敲除小鼠和G蛋白偏向性μ-阿片受体激动剂TRV130,研究了β-抑制蛋白2在背根神经节伤害性神经元阿片耐受性机制中的作用。全细胞膜片钳电流钳电生理实验表明,体外15 - 18小时过夜暴露于10 μM吗啡可诱导β-抑制蛋白2野生型神经元而非基因敲除神经元产生急性耐受性。此外,在野生型神经元中,通过用200 nM TRV130过夜处理规避β-抑制蛋白2激活可减轻耐受性。同样,在温水甩尾试验中,β-抑制蛋白2基因敲除小鼠体内的急性吗啡耐受性得到预防。皮下注射30 mg/kg TRV130也可抑制野生型小鼠体内的急性抗伤害感受耐受性。另外,在β-抑制蛋白2基因敲除神经元中,体内7天暴露于50 mg吗啡丸诱导的耐受性得以保留。同样,β-抑制蛋白2缺失并未减轻雌性或雄性小鼠分别在7天暴露于25 mg或50 mg吗啡丸后体内的抗伤害感受耐受性。因此,这些结果表明β-抑制蛋白2介导背根神经节神经元的急性而非慢性阿片耐受性以及体内抗伤害感受。这表明即使在没有β-抑制蛋白2激活的情况下,阿片类药物诱导的抗伤害感受耐受性也可能发生,从而显著影响偏向性激动剂的临床应用。