Suppr超能文献

利用脂肪酸原料在大肠杆菌中高效生物转化树莓酮。

Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks.

机构信息

College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin, Heilongjiang Province, 150040, PR China.

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, NO. 1 Beichen West Road, Chaoyang District, Beijing, 100101, PR China.

出版信息

Microb Cell Fact. 2021 Mar 12;20(1):68. doi: 10.1186/s12934-021-01551-0.

Abstract

BACKGROUND

Phenylpropanoid including raspberry ketone, is a kind of important natural plant product and widely used in pharmaceuticals, chemicals, cosmetics, and healthcare products. Bioproduction of phenylpropanoid in Escherichia coli and other microbial cell factories is an attractive approach considering the low phenylpropanoid contents in plants. However, it is usually difficult to produce high titer phenylpropanoid production when fermentation using glucose as carbon source. Developing novel bioprocess using alternative sources might provide a solution to this problem. In this study, typical phenylpropanoid raspberry ketone was used as the target product to develop a biosynthesis pathway for phenylpropanoid production from fatty acids, a promising alternative low-cost feedstock.

RESULTS

A raspberry ketone biosynthesis module was developed and optimized by introducing 4-coumarate-CoA ligase (4CL), benzalacetone synthase (BAS), and raspberry ketone reductase (RZS) in Escherichia coli strains CR1-CR4. Then strain CR5 was developed by introducing raspberry ketone biosynthesis module into a fatty acids-utilization chassis FA09 to achieve production of raspberry ketone from fatty acids feedstock. However, the production of raspberry ketone was still limited by the low biomass and unable to substantiate whole-cell bioconversion process. Thus, a process by coordinately using fatty-acids and glycerol was developed. In addition, we systematically screened and optimized fatty acids-response promoters. The optimized promoter Pfrd3 was then successfully used for the efficient expression of key enzymes of raspberry ketone biosynthesis module during bioconversion from fatty acids. The final engineered strain CR8 could efficiently produce raspberry ketone repeatedly using bioconversion from fatty acids feedstock strategy, and was able to produce raspberry ketone to a concentration of 180.94 mg/L from soybean oil in a 1-L fermentation process.

CONCLUSION

Metabolically engineered Escherichia coli strains were successfully developed for raspberry ketone production from fatty acids using several strategies, including optimization of bioconversion process and fine-tuning key enzyme expression. This study provides an essential reference to establish the low-cost biological manufacture of phenylpropanoids compounds.

摘要

背景

苯丙素类化合物包括覆盆子酮,是一种重要的天然植物产物,广泛应用于制药、化工、化妆品和保健品。考虑到植物中苯丙素类化合物含量低,在大肠杆菌和其他微生物细胞工厂中生物合成苯丙素类化合物是一种很有吸引力的方法。然而,当使用葡萄糖作为碳源进行发酵时,通常很难生产出高浓度的苯丙素类化合物。开发使用替代来源的新型生物工艺可能是解决这个问题的一种方法。在本研究中,以典型的苯丙素类化合物覆盆子酮为目标产物,开发了从脂肪酸生产苯丙素类化合物的生物合成途径,脂肪酸是一种有前途的低成本替代原料。

结果

通过在大肠杆菌菌株 CR1-CR4 中引入 4-香豆酸辅酶 A 连接酶(4CL)、苯乙酮合酶(BAS)和覆盆子酮还原酶(RZS),开发并优化了覆盆子酮生物合成模块。然后,通过将覆盆子酮生物合成模块引入脂肪酸利用底盘 FA09,开发了菌株 CR5,以实现从脂肪酸原料生产覆盆子酮。然而,覆盆子酮的生产仍然受到低生物量的限制,无法证明全细胞生物转化过程的可行性。因此,开发了一种协调使用脂肪酸和甘油的工艺。此外,我们系统地筛选和优化了脂肪酸响应启动子。优化后的启动子 Pfrd3 随后成功用于脂肪酸生物转化过程中覆盆子酮生物合成模块关键酶的高效表达。最终的工程菌株 CR8 能够使用脂肪酸生物转化策略有效地重复生产覆盆子酮,并且能够在 1-L 发酵过程中从大豆油中生产出 180.94mg/L 的覆盆子酮。

结论

通过优化生物转化过程和精细调节关键酶的表达等多种策略,成功开发了用于从脂肪酸生产覆盆子酮的代谢工程大肠杆菌菌株。本研究为建立低成本的苯丙素类化合物生物制造提供了重要参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba35/7953670/01ca8f3b9594/12934_2021_1551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验