Suppr超能文献

一种加速接近和成像组织中光学标记感兴趣区域的方法。

An accelerated procedure for approaching and imaging of optically branded region of interest in tissue.

机构信息

VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

出版信息

Methods Cell Biol. 2021;162:205-221. doi: 10.1016/bs.mcb.2020.08.002. Epub 2020 Sep 1.

Abstract

Many areas of biology have benefited from advances in light microscopy (LM). However, one limitation of the LM approach is that numerous critically important aspects of subcellular machineries are well beyond the resolution of conventional LM. For studying these, electron microscopy (EM) remains the technique of choice to visualize and identify macromolecules at the ultrastructural level. The most powerful approach is combining both techniques, LM and EM (i.e., to apply correlative light/electron microscopy, CLEM) to image exactly the same region of interest. This combination allows, for example, to immuno-localize proteins by LM and then to visualize the ultrastructural context of the same region of the sample. However, the identification and correlation of the regions of interest (ROIs) at the levels of LM and EM remains a major challenge, mostly due to the difficulties with correlation along the Z-axis for both modalities. In this chapter, we address this difficulty and describe an approach for performing CLEM in tissue samples using marks from near-infrared branding as indicators of a ROI, and then using serial block face-scanning electron microscopy (SBF-SEM) to identify and approach this ROI. Once a ROI has been approached, serial sections are collected on grids for high-resolution imaging by transmission EM, and subsequent correlation with LM images showing labeled proteins.

摘要

许多生物学领域都受益于光学显微镜(LM)的进步。然而,LM 方法的一个限制是,许多至关重要的亚细胞机器的方面远远超出了传统 LM 的分辨率。对于研究这些方面,电子显微镜(EM)仍然是在超微结构水平上可视化和识别大分子的首选技术。最强大的方法是将两种技术(即应用相关的光/电子显微镜,CLEM)结合起来,对同一感兴趣区域进行成像。这种组合允许例如通过 LM 进行免疫定位,然后可视化样品同一区域的超微结构背景。然而,在 LM 和 EM 两个层面上对感兴趣区域(ROI)进行识别和关联仍然是一个主要挑战,主要是由于两种模式的 Z 轴相关性存在困难。在本章中,我们将解决这个困难,并描述一种在组织样本中进行 CLEM 的方法,使用近红外标记作为 ROI 的指标,然后使用连续块面扫描电子显微镜(SBF-SEM)来识别和接近这个 ROI。一旦接近了一个 ROI,就可以在网格上收集连续切片,通过透射 EM 进行高分辨率成像,并随后与显示标记蛋白的 LM 图像进行关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验