Department of Chemistry, University of Sheffield, Sheffield, United Kingdom.
School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.
Methods Cell Biol. 2021;162:69-87. doi: 10.1016/bs.mcb.2020.12.008. Epub 2021 Jan 23.
The potential for increasing the application of Correlative Light Electron Microscopy (CLEM) technologies in life science research is hindered by the lack of suitable molecular probes that are emissive, photostable, and scatter electrons well. Most brightly fluorescent organic molecules are intrinsically poor electron-scatterers, while multi-metallic compounds scatter electrons well but are usually non-luminescent. Thus, the goal of CLEM to image the same object of interest on the continuous scale from hundreds of microns to nanometers remains a major challenge partially due to requirements for a single probe to be suitable for light (LM) and electron microscopy (EM). Some of the main CLEM probes, based on gold nanoparticles appended with fluorophores and quantum dots (QD) have presented significant drawbacks. Here we present an Iridium-based luminescent metal complex (Ir complex 1) as a probe and describe how we have developed a CLEM workflow based on such metal complexes.
在生命科学研究中增加相关光电子显微镜 (CLEM) 技术应用的潜力受到缺乏合适的分子探针的阻碍,这些探针需要具有发光性、光稳定性和良好的电子散射性。大多数明亮的荧光有机分子本身就是很差的电子散射体,而多金属化合物虽然具有良好的电子散射性,但通常不发光。因此,将相同的感兴趣的物体从数百微米到纳米的连续尺度进行成像仍然是一个主要挑战,部分原因是需要一个单一的探针既适合于光(LM)显微镜又适合于电子显微镜(EM)。一些主要的 CLEM 探针,基于缀合有荧光团和量子点 (QD) 的金纳米粒子,已经呈现出明显的缺点。在这里,我们提出了一种基于铱的发光金属配合物(Ir 配合物 1)作为探针,并描述了我们如何开发基于这种金属配合物的 CLEM 工作流程。