Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
Department of Bioengineering, University of California, Riverside, CA 92521.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2026462118.
Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala) Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala) linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor-acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a "scorpion-shaped" molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NHO=C-NHO=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor-acceptor assemblies linked by long flexible bridges as well as insights into structural motifs for mediating ET and HT in proteins.
阐明相对灵活的共轭物中电荷转移速率的控制因素对于理解生物学中的能量流动以及协助电子设备的设计和构建都很重要。在这里,我们报告了通过四聚体丙氨酸(Ala)将卟啉(Cor)供体与苝二酰亚胺(PDI)受体连接的超快电子转移(ET)和空穴转移(HT)。供体和受体的选择性光激发引发亚皮秒和皮秒 ET 和 HT。用单个丙氨酸或苯丙氨酸代替(Ala)接头不会显著影响 ET 和 HT 动力学。我们推断,这些反应中的电子耦合不是通过四肽骨架介导的,也不是通过直接的供体-受体相互作用介导的。我们结合使用 NMR、圆二色性和计算研究表明,分子内氢键将供体和受体在“蝎子形”分子结构中拉近,从而解释了异常高的 ET 和 HT 速率。光诱导电荷转移依赖于涉及两个关键氢键和一个中央酰胺基团作为介体的(Cor)NHO=C-NHO=C(PDI)电子偶联途径。我们的工作为通过长柔性桥连接的有效供体-受体组装提供了指导,并深入了解了蛋白质中 ET 和 HT 的结构基序。