Suppr超能文献

液接电位和电极表面的介质极性如何影响荷电转移体系的电化学分析?

How Do Liquid-Junction Potentials and Medium Polarity at Electrode Surfaces Affect Electrochemical Analyses for Charge-Transfer Systems?

机构信息

Department of Chemistry, University of California, Riverside, California92521, United States.

Department of Bioengineering, University of California, Riverside, California92521, United States.

出版信息

J Phys Chem B. 2023 Feb 16;127(6):1443-1458. doi: 10.1021/acs.jpcb.2c07983. Epub 2023 Feb 3.

Abstract

The importance of electrochemical analysis for charge-transfer science cannot be overstated. Interfaces in electrochemical cells present certain challenges in the interpretation and the utility of the analysis. This publication focuses on: (1) the medium polarity that redox species experience at the electrode surfaces that is smaller than the polarity in the bulk media and (2) the liquid-junction potentials from interfacing electrolyte solutions of different organic solvents, namely, dichloromethane, benzonitrile, and acetonitrile. Electron-donor-acceptor pairs of aromatics with similar structures (i.e., 1-naphthylamine and 1-nitronaphthalene, 10-methylphenothiazine and 9-nitroanthracene, and 1-aminopyrene and 1-nitropyrene) serve as redox analytes for this study. Using the difference between the reduction potentials of the oxidized donors and the acceptors eliminates the effects of the liquid junctions on the analysis of charge-transfer thermodynamics. This analysis also offers a means for evaluating the medium polarity that the redox species experience at the surface of the working electrode and the effects of the liquid junctions on the measured reduction potentials. While the liquid-junction potentials between the dichloromethane and acetonitrile solutions amount to about 90 mV, for the benzonitrile-acetonitrile junctions, the potentials are only about 30 mV. The presented methods for analyzing the measured electrochemical characteristics of donors and acceptors illustrate a means for improved evaluation of the thermodynamics of charge-transfer systems.

摘要

电化学分析在电荷转移科学中的重要性怎么强调都不为过。电化学电池中的界面在分析的解释和应用方面带来了一定的挑战。本出版物主要关注:(1)氧化还原物种在电极表面经历的比体相介质极性小的介质极性,以及(2)来自界面不同有机溶剂电解质溶液的液接电位,即二氯甲烷、苯腈和乙腈。具有相似结构的芳香族电子给体-受体对(例如,1-萘胺和 1-硝基萘、10-甲基吩噻嗪和 9-硝基蒽、1-氨基芘和 1-硝基芘)作为本研究的氧化还原分析物。使用氧化给体和受体的还原电位之间的差异消除了液接对电荷转移热力学分析的影响。该分析还提供了一种评估氧化还原物种在工作电极表面经历的介质极性以及液接对测量还原电位影响的方法。虽然二氯甲烷和乙腈溶液之间的液接电位约为 90 mV,但对于苯腈-乙腈结,电位仅约为 30 mV。所提出的分析供体和受体电化学特性的方法说明了一种改进电荷转移系统热力学评估的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b12e/10234590/4d4b1189567c/jp2c07983_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验