Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan Canada S7N 5E5.
Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan 278-8510.
J Neurosci. 2021 Apr 21;41(16):3579-3587. doi: 10.1523/JNEUROSCI.2892-20.2021. Epub 2021 Mar 11.
The magnocellular neurosecretory cells (MNCs) of the hypothalamus play a vital role in osmoregulation, but the mechanisms underlying MNC osmosensitivity are not fully understood. We showed previously that high osmolality activates phospholipase C (PLC) in rat MNCs in a Ca-dependent manner and that PLC activation is necessary for full osmotic activation of an N-terminal variant of the TRPV1 (ΔN-TRPV1) channel. We therefore hypothesized that the Ca-dependent δ1 isoform of PLC contributes to ΔN-TRPV1 activation and tested whether MNC function is defective in a transgenic PLCδ1 KO mouse. Water deprivation for 24 h caused greater increases in serum osmolality and losses in body weight in PLCδ1 KO mice than it did in control mice. Action potentials and ΔN-TRPV1 currents were measured in acutely isolated mouse MNCs using whole-cell patch clamp before and after exposure to hypertonic solutions. This treatment elicited a significant activation of ΔN-TRPV1 currents and an increase in firing rate in MNCs isolated from control mice, but not from PLCδ1 KO mice. Submembranous filamentous actin was measured in isolated MNCs before and after treatment with angiotensin II and hypertonic solution. Both treatments caused an increase in filamentous actin fluorescence in MNCs isolated from control mice, but both responses were significantly attenuated in MNCs from PLCδ1 KO mice. Our data demonstrate that the PLCδ1 isoform plays a key role in the activation of ΔN-TRPV1 channels and in osmosensory transduction in MNCs. This study advances our understanding of the molecular mechanisms underlying mammalian osmoregulation. Magnocellular neurosecretory cells (MNCs) of the hypothalamus play a central role in osmoregulation. We have identified a key role for the PLCδ1 isoform in the activation of ΔN-TRPV1 channels and osmosensory transduction in MNCs. The data indicate that the PLCδ1 isoform is activated by the Ca influx occurring during MNC action potentials and exerts a positive feedback on ΔN-TRPV1 channels to enhance MNC excitability. This study provides evidence that PLCδ1 is a key molecule underlying osmosensory transduction, the regulation of VP release, and osmoregulation.
下丘脑的大细胞神经分泌细胞(MNCs)在渗透压调节中起着至关重要的作用,但 MNC 渗透压敏感性的机制尚不完全清楚。我们之前的研究表明,高渗透压以 Ca 依赖性的方式激活大鼠 MNCs 中的磷脂酶 C(PLC),并且 PLC 的激活对于 TRPV1(ΔN-TRPV1)通道的 N 端变体的完全渗透激活是必需的。因此,我们假设 Ca 依赖性的 PLCδ1 同工型有助于 ΔN-TRPV1 的激活,并测试了 PLCδ1 KO 转基因小鼠的 MNC 功能是否存在缺陷。与对照组小鼠相比,水剥夺 24 小时导致 PLCδ1 KO 小鼠的血清渗透压升高幅度更大,体重减轻幅度更大。在使用全细胞膜片钳技术对急性分离的小鼠 MNCs 进行检测之前和之后,用高渗溶液处理。这种处理在对照小鼠的 MNCs 中引起了显著的 ΔN-TRPV1 电流激活和放电频率增加,但在 PLCδ1 KO 小鼠的 MNCs 中则没有。在用血管紧张素 II 和高渗溶液处理前后,在分离的 MNCs 中测量了亚膜丝状肌动蛋白。两种处理都导致了对照小鼠的 MNCs 中丝状肌动蛋白荧光的增加,但在 PLCδ1 KO 小鼠的 MNCs 中,这两种反应都明显减弱。我们的数据表明,PLCδ1 同工型在 ΔN-TRPV1 通道的激活和 MNCs 中的渗透压感觉转导中起着关键作用。这项研究增进了我们对哺乳动物渗透压调节的分子机制的理解。下丘脑的大细胞神经分泌细胞(MNCs)在渗透压调节中起着核心作用。我们已经确定了 PLCδ1 同工型在 MNCs 中 ΔN-TRPV1 通道的激活和渗透压感觉转导中的关键作用。数据表明,PLCδ1 同工型是由 MNC 动作电位期间发生的 Ca 内流激活的,并对 ΔN-TRPV1 通道施加正反馈,以增强 MNC 的兴奋性。这项研究提供了证据表明 PLCδ1 是渗透压感觉转导、VP 释放调节和渗透压调节的关键分子。