Suppr超能文献

通过傅里叶域中的改进模型设计的新型对角微偏振器阵列。

New diagonal micropolarizer arrays designed by an improved model in fourier domain.

作者信息

Hao Jia, Wang Yan, Zhou Kui, Yu Xiaochang, Yu Yiting

机构信息

Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.

Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Northwestern Polytechnical University, Xi'an, 710072, China.

出版信息

Sci Rep. 2021 Mar 11;11(1):5778. doi: 10.1038/s41598-021-85103-x.

Abstract

The design of micropolarizer array (MPA) patterns in Fourier domain provides an efficient approach to reconstruct and investigate the polarization information. Inspired by Alenin's works, in this paper, we propose an improved design model to cover both 2 × N MPAs and other original MPAs, by which an entirely new class of MPA patterns is suggested. The performance of the new patterns is evaluated through Fourier domain analysis and numerical simulations compared with the existing MPAs. Particularly, we analyze the reconstruction accuracy of the first three Stokes parameters and degree of linear polarization (DoLP) in detail. The experimental results confirm that the 2 × 2 × 2 MPA provides the highest reconstruction quality of s, s, s and DoLP in terms of quantitative measures and visual quality, while the 3 × 3 diagonal MPA achieves the state-of-the-art best results in case of single-snapshot systems. The guidance of this extended model and new diagonal MPAs show its massive potential for the division of focal plane (DoFP) polarization imaging applications.

摘要

傅里叶域中微偏振器阵列(MPA)图案的设计为重建和研究偏振信息提供了一种有效方法。受阿列宁作品的启发,本文提出了一种改进的设计模型,以涵盖2×N MPA和其他原始MPA,由此提出了一类全新的MPA图案。通过傅里叶域分析和数值模拟,将新图案的性能与现有MPA进行了比较。特别地,我们详细分析了前三个斯托克斯参数和线性偏振度(DoLP)的重建精度。实验结果证实,从定量测量和视觉质量方面来看,2×2×2 MPA在s、s、s和DoLP的重建质量方面最高,而3×3对角MPA在单快照系统情况下取得了目前最优的结果。这种扩展模型和新对角MPA的指导作用显示了其在焦平面分割(DoFP)偏振成像应用中的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0cb/7952688/4e68e84637ed/41598_2021_85103_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验