Suppr超能文献

一种对来自不断变化的混合物的X射线散射数据进行反卷积的通用方法。

: a general method to deconvolve X-ray scattering data from evolving mixtures.

作者信息

Meisburger Steve P, Xu Da, Ando Nozomi

机构信息

Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA.

出版信息

IUCrJ. 2021 Feb 6;8(Pt 2):225-237. doi: 10.1107/S2052252521000555. eCollection 2021 Mar 1.

Abstract

Mixtures of biological macromolecules are inherently difficult to study using structural methods, as increasing complexity presents new challenges for data analysis. Recently, there has been growing interest in studying evolving mixtures using small-angle X-ray scattering (SAXS) in conjunction with time-resolved, high-throughput or chromatography-coupled setups. Deconvolution and interpretation of the resulting datasets, however, are nontrivial when neither the scattering components nor the way in which they evolve are known . To address this issue, the method (regularized alternating least squares) is introduced, which incorporates simple expectations about the data as prior knowledge, and utilizes parameterization and regularization to provide robust deconvolution solutions. The restraints used by are general properties such as smoothness of profiles and maximum dimensions of species, making it well suited for exploring datasets with unknown species. Here, is applied to the analysis of experimental data from four types of SAXS experiment: anion-exchange (AEX) coupled SAXS, ligand titration, time-resolved mixing and time-resolved temperature jump. Based on its performance with these challenging datasets, it is anticipated that will be a valuable addition to the SAXS analysis toolkit and enable new experiments. The software is implemented in both MATLAB and Python and is available freely as an open-source software package.

摘要

使用结构方法研究生物大分子混合物本质上具有难度,因为复杂性的增加给数据分析带来了新挑战。最近,人们越来越有兴趣结合时间分辨、高通量或色谱联用设置,使用小角X射线散射(SAXS)研究不断演变的混合物。然而,当散射成分及其演变方式均未知时,对所得数据集进行反卷积和解释并非易事。为解决这一问题,引入了正则交替最小二乘法(regularized alternating least squares),该方法将对数据的简单预期作为先验知识,并利用参数化和正则化来提供稳健的反卷积解决方案。正则交替最小二乘法使用的约束是诸如轮廓平滑度和物种最大尺寸等一般属性,这使其非常适合探索含有未知物种的数据集。在此,正则交替最小二乘法被应用于分析来自四种类型SAXS实验的实验数据:阴离子交换(AEX)联用SAXS、配体滴定、时间分辨混合和时间分辨温度跃升。基于其在这些具有挑战性的数据集上的表现,预计正则交替最小二乘法将成为SAXS分析工具包中有价值的补充,并能开展新的实验。该软件用MATLAB和Python实现,并作为开源软件包免费提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73b6/7924237/cc52baf4865b/m-08-00225-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验