Suppr超能文献

使用荟萃分析和加权基因共表达网络分析鉴定三阴性乳腺癌的新型预后基因

Identification of novel prognostic genes of triple-negative breast cancer using meta-analysis and weighted gene co-expressed network analysis.

作者信息

Cao Wenning, Jiang Yike, Ji Xiang, Guan Xuejiao, Lin Qianyu, Ma Lan

机构信息

Department of Chemistry, Tsinghua University, Beijing, China.

State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

出版信息

Ann Transl Med. 2021 Feb;9(3):205. doi: 10.21037/atm-20-5989.

Abstract

BACKGROUND

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high rates of metastasis and recurrence. Conventional clinical treatments are ineffective for it as it lacks therapeutic biomarkers. Figuring out the biomarkers related to TNBC will be beneficial for its clinical treatment and prognosis.

METHODS

Five independent datasets downloaded from the Gene Expression Omnibus database were merged to identify differentially expressed genes between TNBC and non-TNBC samples by using the MetaDE.ES method followed by mapping the differentially expressed genes into a protein-protein interaction network. Meanwhile, the weighted gene co-expressed network analysis (WGCNA) of The Cancer Genome Atlas data was performed to screen the hub genes. The gene functional analyses were conducted by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The correlation between gene expression level and patient overall survival was evaluated by survival analysis.

RESULTS

A total of 11 differentially expressed genes (, , , , , , , , , , ) were obtained from the protein-protein interaction network with degree >10. WGCNA revealed 5 hub genes (, , , , ) that were significantly associated with TNBC. Cell cycle, oocyte meiosis, spliceosome were the pathways significantly enriched in these genes according to GO functionally annotated terms and KEGG pathways analysis. The Kaplan-Meier curves showed that the expression levels of , , were significantly associated with the survival time of TNBC patients (P<0.05).

CONCLUSIONS

A total of 16 genes significantly associated with TNBC were identified by bioinformatic analyses. Among these 16 genes, , , might be able to be used as biomarkers of TNBC.

摘要

背景

三阴性乳腺癌(TNBC)是一种侵袭性乳腺癌亚型,具有高转移率和复发率。由于缺乏治疗生物标志物,传统临床治疗对其无效。找出与TNBC相关的生物标志物将有利于其临床治疗和预后。

方法

从基因表达综合数据库下载的五个独立数据集进行合并,通过MetaDE.ES方法鉴定TNBC和非TNBC样本之间的差异表达基因,随后将差异表达基因映射到蛋白质-蛋白质相互作用网络中。同时,对癌症基因组图谱数据进行加权基因共表达网络分析(WGCNA)以筛选核心基因。通过基因本体(GO)富集分析和京都基因与基因组百科全书(KEGG)通路富集分析进行基因功能分析。通过生存分析评估基因表达水平与患者总生存期之间的相关性。

结果

从蛋白质-蛋白质相互作用网络中获得了总共11个差异表达基因(,,,,,,,,,,),其度数>10。WGCNA揭示了5个与TNBC显著相关的核心基因(,,,,)。根据GO功能注释术语和KEGG通路分析,细胞周期、卵母细胞减数分裂、剪接体是这些基因中显著富集的通路。Kaplan-Meier曲线显示,,,的表达水平与TNBC患者的生存时间显著相关(P<0.05)。

结论

通过生物信息学分析鉴定出总共16个与TNBC显著相关的基因。在这16个基因中,,,可能能够用作TNBC的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/533f/7940929/f02e060dbf49/atm-09-03-205-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验