Tsukamura Hiroko
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
Gen Comp Endocrinol. 2022 Jan 1;315:113755. doi: 10.1016/j.ygcen.2021.113755. Epub 2021 Mar 10.
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
哺乳动物的生殖功能是一个由下丘脑 - 垂体 - 性腺(HPG)轴协调的众多参与者组成的复杂系统。下丘脑促性腺激素释放激素(GnRH)以及随之而来的垂体促性腺激素释放表现出两种分泌模式,即激增模式和脉冲模式。激增模式由成熟卵巢卵泡分泌的雌激素的正反馈作用触发,以诱导大多数哺乳动物物种的雌性排卵。GnRH释放的脉冲模式是刺激促性腺激素的持续性分泌以驱动卵泡生成、精子发生和类固醇生成所必需的,并且受到性类固醇的负向精细调节。越来越多的证据表明,下丘脑的亲吻素神经元是动物生殖的主要调节因子,控制着HPG轴。具体而言,位于下丘脑前部的亲吻素神经元,如啮齿动物的腹内侧视前核(AVPV)以及反刍动物、灵长类动物和其他动物的视前核(POA),以及大多数哺乳动物下丘脑后部弓状核(ARC)中的神经元,分别被认为在产生GnRH释放的激增模式和脉冲模式中起关键作用。本文重点关注AVPV(或POA)亲吻素神经元作为GnRH激增产生中心的作用以及ARC亲吻素神经元作为GnRH脉冲产生中心的作用,它们分别介导雌激素的正反馈和负反馈机制,并讨论雌激素如何通过表观遗传方式调节这两类神经元中的亲吻素基因表达。本文还提供了营养不良和哺乳通过抑制ARC亲吻素神经元来抑制GnRH/促性腺激素脉冲的机制。此外,本文讨论了雌激素对发育中的大脑中亲吻素神经元的编程作用,以揭示GnRH/促性腺激素释放性别差异的潜在机制,以及啮齿动物模型中超生理水平雌激素暴露导致的不可逆不育。