Suppr超能文献

个体化巴格达支架:立体光刻技术、力学性能和体内测试。

Personalized Baghdadite scaffolds: stereolithography, mechanics and in vivo testing.

机构信息

Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia.

Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; The Children's Hospital at Westmead Clinical School, Sydney Medical School, the University of Sydney, Westmead, NSW 2145, Australia.

出版信息

Acta Biomater. 2021 Sep 15;132:217-226. doi: 10.1016/j.actbio.2021.03.012. Epub 2021 Mar 9.

Abstract

An ongoing challenge in the field of orthopedics is to produce a clinically relevant synthetic ceramic scaffold for the treatment of 'critical-sized' bone defects, which cannot heal without intervention. We had developed a bioactive ceramic (baghdadite, Ca₃ZrSi₂O₉) and demonstrated its outstanding bioactivity using traditional manufacturing techniques. Here, we report on the development of a versatile stereolithography printing technology that enabled fabrication of anatomically-shaped and -sized Baghdadite scaffolds. We assessed the in vivo bioactivity of these scaffolds in co-delivering of bone morphogenetic protein-2 (BMP2) and zoledronic acid (ZA) through bioresorbable coatings to induce bone formation and increase retention in a rat model of heterotopic ossification. Micro-computed tomography, histology, mechanical tests pre- and post-implantation, and mechanical modelling were used to assess bone ingrowth and its effects on the mechanics of the scaffolds. Bone ingrowth and the consequent mechanical properties of the scaffolds improved with increasing BMP2 dose. Co-delivery of ZA with BMP2 further improved this outcome. The significant bone formation within the scaffolds functionalized with 10 µg BMP2 and 2 µg ZA made them 2.3 × stiffer and 2.7 × stronger post-implantation and turned these inherently brittle scaffolds into a tough and deformable material. The effects of bone ingrowth on the mechanical properties of scaffolds were captured in a mechanical model that can be used in future clinical studies for non-destructive evaluation of scaffold's stiffness and strength as new bone forms. These results support the practical utilization of our versatile stereolithographic printing methods and BMP2/ZA functionalization to create fit-for-purpose personalized implants for clinical trials. STATEMENT OF SIGNIFICANCE: In this study, we addressed a long-standing challenge of developing a ceramic printing technology that enables fabrication of customizable anatomically-shaped and -sized bioceramic scaffolds with precise internal architectures using an inexpensive desktop printer. We also addressed another challenge related to delivery of pharmaceuticals. BMP2, currently available as a bone-inducing bioactive protein, is clinically administered in a collagen scaffold that has limited moldability and poor mechanical properties. The comparably stiffer and stronger 3D printed personalized Baghdadite scaffolds developed here can be readily functionalized with bioresorbable coatings containing BMP2 ± ZA. These innovations considerably improve on the prior art and are scalable for use in human surgery.

摘要

在骨科领域,一个持续存在的挑战是生产出一种临床上相关的合成陶瓷支架,用于治疗“临界尺寸”的骨缺损,如果不进行干预,这些骨缺损无法自行愈合。我们已经开发出一种生物活性陶瓷(巴格达石,Ca₃ZrSi₂O₉),并通过传统制造技术证明了其优异的生物活性。在这里,我们报告了一种多功能立体光刻打印技术的发展,该技术能够制造出具有解剖形状和尺寸的巴格达石支架。我们评估了这些支架在通过可生物吸收涂层共递送骨形态发生蛋白-2(BMP2)和唑来膦酸(ZA)以诱导骨形成和增加在异位骨化大鼠模型中的保留率方面的体内生物活性。使用微计算机断层扫描、组织学、植入前和植入后的力学测试以及力学模型来评估骨向内生长及其对支架力学性能的影响。随着 BMP2 剂量的增加,骨向内生长和支架的相应力学性能得到改善。与 BMP2 共递送 ZA 进一步改善了这一结果。在功能化有 10µg BMP2 和 2µg ZA 的支架内形成的大量骨使它们在植入后分别增加了 2.3 倍和 2.7 倍的刚度和强度,使这些原本易碎的支架变成了坚韧且可变形的材料。骨向内生长对支架力学性能的影响在机械模型中得到了捕获,该模型可用于未来的临床研究中,以非破坏性评估新骨形成时支架的刚度和强度。这些结果支持我们使用多功能立体光刻打印方法和 BMP2/ZA 功能化来为临床试验创建适合特定用途的个性化植入物的实际应用。

意义声明

在这项研究中,我们解决了一个长期存在的挑战,即开发一种陶瓷打印技术,该技术能够使用廉价的桌面打印机制造出具有精确内部结构的可定制的解剖形状和尺寸的生物陶瓷支架。我们还解决了与药物输送相关的另一个挑战。BMP2 目前作为一种诱导骨形成的生物活性蛋白,以胶原支架的形式临床给药,这种支架的可模塑性有限,机械性能较差。这里开发的相对更硬更强的 3D 打印个性化巴格达石支架可以很容易地用含有 BMP2±ZA 的可生物吸收涂层进行功能化。这些创新大大改进了现有技术,并可扩展用于人类手术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验