Suppr超能文献

使用 3D 打印生物活性支架进行长骨的形态和功能修复。

Form and functional repair of long bone using 3D-printed bioactive scaffolds.

机构信息

Department of Biomaterials and Biomimetics, College of Dentistry New York University, New York, New York.

Biomaterials Department, Universidad de los Andes, Santiago, Chile.

出版信息

J Tissue Eng Regen Med. 2018 Sep;12(9):1986-1999. doi: 10.1002/term.2733. Epub 2018 Aug 24.

Abstract

Injuries to the extremities often require resection of necrotic hard tissue. For large-bone defects, autogenous bone grafting is ideal but, similar to all grafting procedures, is subject to limitations. Synthetic biomaterial-driven engineered healing offers an alternative approach. This work focuses on three-dimensional (3D) printing technology of solid-free form fabrication, more specifically robocasting/direct write. The research hypothesizes that a bioactive calcium-phosphate scaffold may successfully regenerate extensive bony defects in vivo and that newly regenerated bone will demonstrate mechanical properties similar to native bone as healing time elapses. Robocasting technology was used in designing and printing customizable scaffolds, composed of 100% beta tri-calcium phosphate (β-TCP), which were used to repair critical sized long-bone defects. Following full thickness segmental defects (~11 mm × full thickness) in the radial diaphysis in New Zealand white rabbits, a custom 3D-printed, 100% β-TCP, scaffold was implanted or left empty (negative control) and allowed to heal over 8, 12, and 24 weeks. Scaffolds and bone, en bloc, were subjected to micro-CT and histological analysis for quantification of bone, scaffold and soft tissue expressed as a function of volume percentage. Additionally, biomechanical testing at two different regions, (a) bone in the scaffold and (b) in native radial bone (control), was conducted to assess the newly regenerated bone for reduced elastic modulus (E ) and hardness (H) using nanoindentation. Histological analysis showed no signs of any adverse immune response while revealing progressive remodelling of bone within the scaffold along with gradual decrease in 3D-scaffold volume over time. Micro-CT images indicated directional bone ingrowth, with an increase in bone formation over time. Reduced elastic modulus (E ) data for the newly regenerated bone presented statistically homogenous values analogous to native bone at the three time points, whereas hardness (H) values were equivalent to the native radial bone only at 24 weeks. The negative control samples showed limited healing at 8 weeks. Custom engineered β-TCP scaffolds are biocompatible, resorbable, and can directionally regenerate and remodel bone in a segmental long-bone defect in a rabbit model. Custom designs and fabrication of β-TCP scaffolds for use in other bone defect models warrant further investigation.

摘要

四肢损伤通常需要切除坏死的硬组织。对于大骨缺损,自体骨移植是理想的,但与所有移植手术一样,也受到限制。合成生物材料驱动的工程化愈合提供了一种替代方法。这项工作专注于无定形制造的三维(3D)打印技术,更具体地说是机器人铸造/直接写入。研究假设生物活性钙磷支架可以成功地在体内再生广泛的骨缺损,并且随着愈合时间的延长,新再生的骨将表现出与天然骨相似的机械性能。机器人铸造技术用于设计和打印可定制的支架,由 100%β-磷酸三钙(β-TCP)组成,用于修复关键尺寸的长骨缺损。在新西兰白兔桡骨干完全厚度节段性缺损(~11mm×全厚度)后,植入定制的 3D 打印、100%β-TCP 支架或不植入(阴性对照)并允许愈合 8、12 和 24 周。将支架和骨整块进行微 CT 和组织学分析,以定量分析作为体积百分比函数的骨、支架和软组织。此外,在两个不同区域(a)支架中的骨和(b)天然桡骨(对照)进行生物力学测试,使用纳米压痕法评估新再生骨的弹性模量(E)和硬度(H)降低。组织学分析表明没有任何不良免疫反应的迹象,同时揭示了随着时间的推移,支架内骨的逐渐重塑以及 3D 支架体积的逐渐减少。微 CT 图像表明有方向的骨向内生长,随着时间的推移骨形成增加。新再生骨的弹性模量(E)数据在三个时间点呈现出统计学上同质的值,类似于天然骨,而硬度(H)值仅在 24 周时与天然桡骨相当。阴性对照样本在 8 周时显示出有限的愈合。定制工程化的β-TCP 支架具有生物相容性、可吸收性,并可在兔模型的节段性长骨缺损中定向再生和重塑骨。β-TCP 支架的定制设计和制造用于其他骨缺损模型值得进一步研究。

相似文献

引用本文的文献

本文引用的文献

1
Osseodensification for enhancement of spinal surgical hardware fixation.骨密度增高术增强脊柱外科内固定物固定效果。
J Mech Behav Biomed Mater. 2017 May;69:275-281. doi: 10.1016/j.jmbbm.2017.01.020. Epub 2017 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验