George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, GE 30332, United States.
J Biomech. 2021 May 7;120:110349. doi: 10.1016/j.jbiomech.2021.110349. Epub 2021 Mar 2.
Occlusive thrombosis in arteries causes heart attacks and strokes. The rapid growth of thrombus at elevated shear rates (~10,000 1/s) relies on shear-induced platelet aggregation (SIPA) thought to come about from the entanglement of von Willebrand factor (VWF) molecules. The mechanism for SIPA is not yet understood in terms of cell- and molecule-level dynamics in fast flowing bloodstreams. Towards this end, we develop a multiscale computational model to recreate SIPA in silico, where the suspension dynamics and interactions of individual platelets and VWF multimers are resolved directly. The platelet-VWF interaction via GP1b-A1 bonds is prescribed with intrinsic binding rates theoretically derived and informed by single-molecule measurements. The model is validated against existing microfluidic SIPA experiments, showing good agreement with the in vitro observations in terms of the morphology, traveling distance and capture time of the platelet aggregates. Particularly, the capture of aggregates can occur in a few milliseconds, comparable to the platelet transit time through pathologic arterial stenotic sections and much shorter than the time for shear-induced platelet activation. The multiscale SIPA simulator provides a cross-scale tool for exploring the biophysical mechanisms of SIPA in silico that are difficult to access with single-molecule measurements or micro-/macro-fluidic assays only.
动脉中的闭塞性血栓会导致心脏病发作和中风。在高剪切率(~10000 1/s)下血栓的快速生长依赖于剪切诱导的血小板聚集(SIPA),这被认为是由于 von Willebrand 因子(VWF)分子的缠结引起的。SIPA 的机制尚不清楚,特别是在快速流动的血流中的细胞和分子水平动力学方面。为此,我们开发了一种多尺度计算模型,以在计算机中重现 SIPA,其中可以直接解决单个血小板和 VWF 多聚体的悬浮动力学和相互作用。血小板-VWF 通过 GP1b-A1 键的相互作用通过理论推导的固有结合速率来规定,并通过单分子测量得到告知。该模型通过现有的微流控 SIPA 实验进行了验证,在血小板聚集体的形态、行进距离和捕获时间方面与体外观察结果吻合良好。特别是,聚集体的捕获可以在几毫秒内发生,与血小板通过病理性动脉狭窄部位的通过时间相当,并且比剪切诱导的血小板激活时间短得多。多尺度 SIPA 模拟器提供了一种跨尺度工具,可用于探索 SIPA 的生物物理机制,而仅通过单分子测量或微/宏观流体测定很难获得这些机制。