Suppr超能文献

使用独特分子标识符改进基于新一代测序的高分辨率拷贝数变异分析。

Improving high-resolution copy number variation analysis from next generation sequencing using unique molecular identifiers.

作者信息

Viailly Pierre-Julien, Sater Vincent, Viennot Mathieu, Bohers Elodie, Vergne Nicolas, Berard Caroline, Dauchel Hélène, Lecroq Thierry, Celebi Alison, Ruminy Philippe, Marchand Vinciane, Lanic Marie-Delphine, Dubois Sydney, Penther Dominique, Tilly Hervé, Mareschal Sylvain, Jardin Fabrice

机构信息

INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.

Centre Henri Becquerel, Rouen, France.

出版信息

BMC Bioinformatics. 2021 Mar 12;22(1):120. doi: 10.1186/s12859-021-04060-4.

Abstract

BACKGROUND

Recently, copy number variations (CNV) impacting genes involved in oncogenic pathways have attracted an increasing attention to manage disease susceptibility. CNV is one of the most important somatic aberrations in the genome of tumor cells. Oncogene activation and tumor suppressor gene inactivation are often attributed to copy number gain/amplification or deletion, respectively, in many cancer types and stages. Recent advances in next generation sequencing protocols allow for the addition of unique molecular identifiers (UMI) to each read. Each targeted DNA fragment is labeled with a unique random nucleotide sequence added to sequencing primers. UMI are especially useful for CNV detection by making each DNA molecule in a population of reads distinct.

RESULTS

Here, we present molecular Copy Number Alteration (mCNA), a new methodology allowing the detection of copy number changes using UMI. The algorithm is composed of four main steps: the construction of UMI count matrices, the use of control samples to construct a pseudo-reference, the computation of log-ratios, the segmentation and finally the statistical inference of abnormal segmented breaks. We demonstrate the success of mCNA on a dataset of patients suffering from Diffuse Large B-cell Lymphoma and we highlight that mCNA results have a strong correlation with comparative genomic hybridization.

CONCLUSION

We provide mCNA, a new approach for CNV detection, freely available at https://gitlab.com/pierrejulien.viailly/mcna/ under MIT license. mCNA can significantly improve detection accuracy of CNV changes by using UMI.

摘要

背景

最近,影响致癌途径相关基因的拷贝数变异(CNV)在疾病易感性管理方面引起了越来越多的关注。CNV是肿瘤细胞基因组中最重要的体细胞畸变之一。在许多癌症类型和阶段,致癌基因激活和肿瘤抑制基因失活通常分别归因于拷贝数增加/扩增或缺失。新一代测序技术的最新进展允许在每个读段中添加独特分子标识符(UMI)。每个靶向DNA片段都用添加到测序引物中的独特随机核苷酸序列进行标记。UMI通过使读段群体中的每个DNA分子具有独特性,对CNV检测特别有用。

结果

在此,我们介绍分子拷贝数改变(mCNA),这是一种使用UMI检测拷贝数变化的新方法。该算法由四个主要步骤组成:构建UMI计数矩阵、使用对照样本构建伪参考、计算对数比值、分段以及最后对异常分段断点进行统计推断。我们在弥漫性大B细胞淋巴瘤患者数据集上证明了mCNA的成功,并强调mCNA结果与比较基因组杂交有很强的相关性。

结论

我们提供了mCNA,一种用于CNV检测的新方法,可在https://gitlab.com/pierrejulien.viailly/mcna/ 上根据麻省理工学院许可免费获取。mCNA通过使用UMI可以显著提高CNV变化的检测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdfc/7971104/fc95970c93b4/12859_2021_4060_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验