USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA.
Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
BMC Plant Biol. 2021 Mar 13;21(1):134. doi: 10.1186/s12870-021-02915-9.
Providing the photosynthesis factory for plants, chloroplasts are critical for crop biomass and economic yield. However, chloroplast development is a complicated process, coordinated by the cross-communication between the nucleus and plastids, and the underlying biogenesis mechanism has not been fully revealed. Variegation mutants have provided ideal models to identify genes or factors involved in chloroplast development. Well-developed chloroplasts are present in the green tissue areas, while the white areas contain undifferentiated plastids that are deficient in chlorophyll. Unlike albino plants, variegation mutants survive to maturity and enable investigation into the signaling pathways underlying chloroplast biogenesis. The allelic variegated mutants in barley, grandpa 1 (gpa1), have long been identified but have not been genetically characterized.
We characterized and genetically analyzed the grandpa1.a (gpa1.a) mutant. The chloroplast ultrastructure was evaluated using transmission electron microscopy (TEM), and it was confirmed that chloroplast biogenesis was disrupted in the white sections of gpa1.a. To determine the precise position of Gpa1, a high-resolution genetic map was constructed. Segregating individuals were genotyped with the barley 50 k iSelect SNP Array, and the linked SNPs were converted to PCR-based markers for genetic mapping. The Gpa1 gene was mapped to chromosome 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. In the variegated gpa1.a mutant, we identified a large deletion in this gene cluster that eliminates a putative plastid terminal oxidase (PTOX).
Here we characterized and genetically mapped the gpa1.a mutation causing a variegation phenotype in barley. The PTOX-encoding gene in the delimited region is a promising candidate for Gpa1. Therefore, the present study provides a foundation for the cloning of Gpa1, which will elevate our understanding of the molecular mechanisms underlying chloroplast biogenesis, particularly in monocot plants.
叶绿体为植物提供光合作用工厂,对作物生物量和经济产量至关重要。然而,叶绿体的发育是一个复杂的过程,由核与质体之间的交叉通讯协调,其潜在的生物发生机制尚未完全揭示。斑驳突变体为鉴定参与叶绿体发育的基因或因子提供了理想的模型。发育良好的叶绿体存在于绿色组织区域,而白色区域包含未分化的质体,缺乏叶绿素。与白化植物不同,斑驳突变体能成熟存活,使人们能够研究叶绿体生物发生的信号通路。大麦等位斑驳突变体 grandpa1 (gpa1) 早已被鉴定出来,但尚未进行遗传特征分析。
我们对 grandpa1.a (gpa1.a) 突变体进行了特征和遗传分析。使用透射电子显微镜 (TEM) 评估叶绿体超微结构,证实 gpa1.a 的白色部分中叶绿体生物发生受到干扰。为了确定 Gpa1 的精确位置,构建了高分辨率遗传图谱。用大麦 50 k iSelect SNP 芯片对分离个体进行基因型分析,将连锁的 SNP 转换为基于 PCR 的标记进行遗传作图。Gpa1 基因被定位到染色体 2H 上,该区域与光合作用或叶绿体分化相关的基因簇功能相关。在斑驳的 gpa1.a 突变体中,我们在这个基因簇中发现了一个大的缺失,消除了一个假定的质体末端氧化酶 (PTOX)。
在这里,我们对导致大麦斑驳表型的 gpa1.a 突变进行了特征和遗传作图。在所限定区域中,PTOX 编码基因是 Gpa1 的一个有希望的候选基因。因此,本研究为克隆 Gpa1 提供了基础,这将提高我们对叶绿体生物发生分子机制的理解,特别是在单子叶植物中。