Overlander-Chen Megan, Carlson Craig H, Fiedler Jason D, Yang Shengming
USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, North Dakota, 58102, USA.
Department of Plant Sciences, North Dakota State University, North Dakota, 58102, USA.
Plant J. 2024 Feb;117(4):1179-1190. doi: 10.1111/tpj.16552. Epub 2023 Nov 20.
Chloroplast biogenesis is critical for crop biomass and economic yield. However, chloroplast development is a very complicated process coordinated by cross-communication between the nucleus and plastids, and the underlying mechanisms have not been fully revealed. To explore the regulatory machinery for chloroplast biogenesis, we conducted map-based cloning of the Grandpa 1 (Gpa1) gene regulating chloroplast development in barley. The spontaneous mutation gpa1.a caused a variegation phenotype of the leaf, dwarfed growth, reduced grain yield, and increased tiller number. Genetic mapping anchored the Gpa1 gene onto 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. One gene (HORVU.MOREX.r3.2HG0213170) in the delimited region encodes a putative plastid terminal oxidase (PTOX) in thylakoid membranes, which is homologous to IMMUTANS (IM) of Arabidopsis. The IM gene is required for chloroplast biogenesis and maintenance of functional thylakoids in Arabidopsis. Using CRISPR technology and gene transformation, we functionally validated that the PTOX-encoding gene, HORVU.MOREX.r3.2HG0213170, is the causal gene of Gpa1. Gene expression and chemical analysis revealed that the carotenoid biosynthesis pathway is suppressed by the gpa1 mutation, rendering mutants vulnerable to photobleaching. Our results showed that the overtillering associated with the gpa1 mutation was caused by the lower accumulation of carotenoid-derived strigolactones (SLs) in the mutant. The cloning of Gpa1 not only improves our understanding of the molecular mechanisms underlying chloroplast biosynthesis but also indicates that the PTOX activity is conserved between monocots and dicots for the establishment of the photosynthesis factory.
叶绿体生物发生对作物生物量和经济产量至关重要。然而,叶绿体发育是一个非常复杂的过程,由细胞核与质体之间的相互交流协调,其潜在机制尚未完全揭示。为了探索叶绿体生物发生的调控机制,我们对调控大麦叶绿体发育的祖父1(Gpa1)基因进行了图位克隆。自发突变gpa1.a导致叶片出现杂色表型、生长矮小、籽粒产量降低和分蘖数增加。遗传定位将Gpa1基因定位到2H染色体上一个与光合作用或叶绿体分化功能相关的基因簇内。在划定区域内的一个基因(HORVU.MOREX.r3.2HG0213170)编码类囊体膜上一种假定的质体末端氧化酶(PTOX),它与拟南芥的IMMUTANS(IM)同源。IM基因是拟南芥叶绿体生物发生和功能性类囊体维持所必需的。利用CRISPR技术和基因转化,我们功能验证了编码PTOX的基因HORVU.MOREX.r3.2HG0213170是Gpa1的致病基因。基因表达和化学分析表明,gpa1突变抑制了类胡萝卜素生物合成途径,使突变体易受光漂白影响。我们的结果表明,与gpa1突变相关的过度分蘖是由于突变体中类胡萝卜素衍生的独脚金内酯(SLs)积累较低所致。Gpa1的克隆不仅增进了我们对叶绿体生物合成潜在分子机制的理解,还表明在单子叶植物和双子叶植物之间,PTOX活性对于光合作用工厂的建立是保守的。