Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey.
Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia.
Neurotox Res. 2021 Jun;39(3):588-597. doi: 10.1007/s12640-021-00349-7. Epub 2021 Mar 13.
Aldose reductase (AR) catalyzes the conversion of glucose to sorbitol in a NADPH-dependent reaction, thereby increasing the production of reactive oxygen species (ROS). Since AR activation is linked to redox dysregulation and cell damage in neurodegenerative diseases, AR inhibitors (ARIs) constitute promising therapeutic tools for the treatment of these disorders. Among these compounds, the novel substituted triazinoindole derivatives cemtirestat (CMTI) and COTI, as well as the clinically employed epalrestat (EPA) and the pyridoindole-antioxidant stobadine (STB), were tested in both PC12 cells and BV2 microglia exposed to four different neurotoxic models. These include (1) oxidative stress with hydrogen peroxide (HO), (2) mitochondrial complex IV inhibition with NaN, (3) endoplasmic reticulum-stress and lipotoxicity induced by palmitic acid/bovine serum albumin (PAM/BSA), and (4) advanced carbonyl compound lipotoxicity by 4-hydroxynonenal (4-HNE). All toxic compounds decreased cell viability and increased ROS formation in both PC12 and BV2 cells in a concentration-dependent manner (1-1000 μM; NaN < HO≈PAM/BSA < 4-HNE). In PC12 cells, EPA increased cell viability in all toxic models only at 1 μM, whereas CMTI restored baseline viability in all toxic models. COTI afforded protection against lipotoxicity, while STB only prevented HO-induced toxicity. Except for the 4-HNE model, EPA prevented ROS generation in all other toxic models, whereas CMTI, COTI, and STB prevented ROS production in all toxic models. In BV2 cells, EPA and CMTI restored baseline cell viability in all toxic models tested, while COTI and STB did not prevent the loss of viability in the NaN model. All ARIs and STB efficiently prevented ROS formation in all toxic models in a concentration-independent manner. The differential protective effects evoked by the novel ARIs and STB on the toxic models tested herein provide novel and relevant comparative evidence for the design of specific therapeutic strategies against neurodegenerative events associated with neurological disorders.
醛糖还原酶(AR)在 NADPH 依赖性反应中将葡萄糖催化转化为山梨醇,从而增加活性氧物种(ROS)的产生。由于 AR 的激活与神经退行性疾病中的氧化还原失调和细胞损伤有关,因此 AR 抑制剂(ARIs)是治疗这些疾病的有前途的治疗工具。在这些化合物中,新型取代的三嗪并吲哚衍生物 Cemtirestat(CMTI)和 COTI,以及临床上使用的 Epalrestat(EPA)和吡啶并吲哚抗氧化剂 Stobadine(STB),在暴露于四种不同神经毒性模型的 PC12 细胞和 BV2 小胶质细胞中进行了测试。这些模型包括:(1)用过氧化氢(HO)引起的氧化应激,(2)用NaN 引起的线粒体复合物 IV 抑制,(3)用棕榈酸/牛血清白蛋白(PAM/BSA)引起的内质网应激和脂毒性,以及(4)用 4-羟基壬烯醛(4-HNE)引起的高级羰基化合物脂毒性。所有有毒化合物以浓度依赖性方式降低 PC12 和 BV2 细胞的细胞活力并增加 ROS 形成(1-1000 μM;NaN < HO≈PAM/BSA < 4-HNE)。在 PC12 细胞中,EPA 仅在 1 μM 时在所有毒性模型中增加细胞活力,而 CMTI 在所有毒性模型中恢复基线活力。COTI 提供了对脂毒性的保护,而 STB 仅可预防 HO 诱导的毒性。除 4-HNE 模型外,EPA 可预防所有其他毒性模型中的 ROS 生成,而 CMTI、COTI 和 STB 可预防所有毒性模型中的 ROS 生成。在 BV2 细胞中,EPA 和 CMTI 在所有测试的毒性模型中恢复了基线细胞活力,而 COTI 和 STB 不能防止 NaN 模型中活力的丧失。所有 ARIs 和 STB 以浓度无关的方式有效地防止了所有毒性模型中的 ROS 形成。新型 ARIs 和 STB 在测试的毒性模型中引起的不同保护作用为针对与神经紊乱相关的神经退行性事件设计特定的治疗策略提供了新的和相关的比较证据。