Suppr超能文献

恶性疟原虫 LipB 突变体能改变无性生殖阶段的氧化还原和碳代谢,不能在按蚊中完成孢子生殖。

Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes.

机构信息

Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.

Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.

出版信息

Int J Parasitol. 2021 May;51(6):441-453. doi: 10.1016/j.ijpara.2020.10.011. Epub 2021 Mar 11.

Abstract

Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.

摘要

疟疾仍然是最重要的全球性传染病之一。耐药性的出现和新的高效抗疟药物的短缺继续阻碍着疟疾消除议程。疟原虫对氧化还原环境的变化非常敏感。了解调节寄生虫氧化还原的机制可能有助于设计新的药物。疟原虫在其细胞质、线粒体和质体(类锥体)中具有复杂的氧化还原调节系统网络。虽然已经探索了硫氧还蛋白和谷胱甘肽途径的酶在寄生虫存活中的作用,但类锥体中产生的α-硫辛酸(LA)的抗氧化作用尚未得到测试。为了初步探讨 LA 在氧化还原调节中的潜在作用,我们分析了一种缺乏已知缺乏 LA 的质体硫辛酸蛋白连接酶 B(lipB)的疟原虫(3D7 株)突变体。我们的结果显示质体和细胞质中的氧化还原调节剂表达发生变化。我们进一步检测到寄生虫中心碳代谢的变化,lipB 缺失导致糖酵解和三羧酸循环活性的变化。此外,在另一种疟原虫细胞系(NF54)中,lipB 的缺失影响了蚊子中的发育,阻止了可感染的子孢子阶段的检测。虽然目前尚不清楚观察到的表型是否相关,但这些发现表明 LA 生物合成是进一步研究无性阶段氧化还原调节的重要课题,并指出 LipB 可能成为开发新传播药物的潜在目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c0b/8126644/790032a0f4de/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验