Cardiology and Cardiovascular Pathophysiology, "Santa Maria della Misericordia" Hospital, University of Perugia, Italy.
Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa, Italy.
Int J Cardiol. 2021 Jun 1;332:91-98. doi: 10.1016/j.ijcard.2021.02.072. Epub 2021 Mar 10.
Ejection fraction (EF) is still widely used to categorize heart failure (HF) patients but has limitations. Global longitudinal strain (GLS) has emerged as a new prognosticator in HF, independent of EF.
We investigated the incremental predictive benefit of GLS over different risk profiles as identified by automated cluster analysis of simple echocardiographic parameters.
In 797 HFrEF patients (age 66 ± 12y; mean EF 30 ± 7%), unsupervised cluster analysis of 10 routine echocardiographic variables (without GLS) was performed. Median follow-up was 37 months. End-point was all-cause mortality. Association between risk profiles, GLS, and mortality was assessed by Cox proportional-hazard modeling with interaction term. Cluster analysis allocated patients to 3 different risk phenogroups (PG): PG-1 (mild diastolic dysfunction [DD], moderate systolic dysfunction, no pulmonary hypertension, normal right ventricular [RV] function); PG-2 (moderate DD, mild pulmonary hypertension, normal RV function); PG-3 (severe DD, advanced systolic dysfunction, pulmonary hypertension, RV dysfunction). Compared to PG-1, PG-2 and PG-3 showed increased adjusted-hazard ratio (1.71; 95% CI:1.05-2.77, P = 0.30; and 2.58; 95% CI:1.50-4.44, P < 0.001, respectively). GLS was independently associated with outcome in the whole population (adjusted-HR: 1.11; 95% CI: 1.05-1.17, P = 0.001); however, profile membership modified the relationship between GLS and outcome which was no longer significant in PG-3 (P for interaction = 0.003).
Within HFrEF populations, clustering of routine echocardiography parameters can automatically identify patients with different risk profiles; further assessment by GLS may be useful for patients with not advanced disease.
射血分数(EF)仍然广泛用于心力衰竭(HF)患者的分类,但存在局限性。整体纵向应变(GLS)已成为 HF 的一种新的预后指标,独立于 EF。
我们通过简单超声心动图参数的自动聚类分析,研究 GLS 对不同风险特征的预测增益。
在 797 例射血分数降低的心力衰竭(HFrEF)患者(年龄 66 ± 12 岁;平均 EF 30 ± 7%)中,对 10 个常规超声心动图变量(不包括 GLS)进行了无监督聚类分析。中位随访时间为 37 个月。终点是全因死亡率。通过 Cox 比例风险模型和交互项评估风险特征、GLS 和死亡率之间的关系。聚类分析将患者分为 3 个不同的风险表型(PG):PG-1(轻度舒张功能障碍[DD]、中度收缩功能障碍、无肺动脉高压、正常右心室[RV]功能);PG-2(中度 DD、轻度肺动脉高压、正常 RV 功能);PG-3(重度 DD、严重收缩功能障碍、肺动脉高压、RV 功能障碍)。与 PG-1 相比,PG-2 和 PG-3 显示出更高的调整后的危险比(1.71;95%CI:1.05-2.77,P = 0.30;2.58;95%CI:1.50-4.44,P < 0.001)。GLS 在整个研究人群中与结局独立相关(调整后的 HR:1.11;95%CI:1.05-1.17,P = 0.001);然而,PG-3 中的 Profile 成员改变了 GLS 与结局之间的关系,这不再显著(P 交互= 0.003)。
在 HFrEF 人群中,常规超声心动图参数的聚类可自动识别具有不同风险特征的患者;对 GLS 进一步评估可能对病情不严重的患者有用。