Gearhart Addison, Bassi Sunakshi, Rathod Rahul H, Beroukhim Rebecca S, Lipsitz Stuart, Gold Maxwell P, Harrild David M, Dionne Audrey, Ghelani Sunil J
Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
Department of Cardiology, Children's Hospital of Philadelphia, Phildelphia, Pennsylvannia, USA.
J Cardiovasc Magn Reson. 2024 Winter;26(2):101060. doi: 10.1016/j.jocmr.2024.101060. Epub 2024 Jul 14.
Individuals with a Fontan circulation encompass a heterogeneous group with adverse outcomes linked to ventricular dilation, dysfunction, and dyssynchrony. The purpose of this study was to assess if unsupervised machine learning cluster analysis of cardiovascular magnetic resonance (CMR)-derived dyssynchrony metrics can separate ventricles in the Fontan circulation from normal control left ventricles and identify prognostically distinct subgroups within the Fontan cohort.
This single-center, retrospective study used 503 CMR studies from Fontan patients (median age 15 y) and 42 from age-matched controls from January 2005 to May 2011. Feature tracking on short-axis cine stacks assessed radial and circumferential strain, strain rate, and displacement. Unsupervised K-means clustering was applied to 24 mechanical dyssynchrony metrics derived from these deformation measurements. Clusters were compared for demographic, anatomical, and composite outcomes of death, or heart transplantation.
Four distinct phenotypic clusters were identified. Over a median follow-up of 4.2 y (interquartile ranges 1.7-8.8 y), 58 (11.5%) patients met the composite outcome. The highest-risk cluster (largely comprised of right or mixed ventricular morphology and dilated, dyssynchronous ventricles) exhibited a higher hazard for the composite outcome compared to the lowest-risk cluster while controlling for ventricular morphology (hazard ratio [HR] 6.4; 95% confidence interval [CI] 2.1-19.3; P value 0.001) and higher indexed end-diastolic volume (HR 3.2; 95% CI 1.04-10.0; P value 0.043) per 10 mL/m.
Unsupervised machine learning using CMR-derived dyssynchrony metrics identified four distinct clusters of patients with Fontan circulation and healthy controls with varying clinical characteristics and risk profiles. This technique can be used to guide future studies and identify more homogeneous subsets of patients from an overall heterogeneous population.
接受Fontan循环手术的个体是一个异质性群体,其不良结局与心室扩张、功能障碍和不同步有关。本研究的目的是评估基于心血管磁共振(CMR)得出的不同步指标进行无监督机器学习聚类分析,能否将Fontan循环中的心室与正常对照左心室区分开来,并在Fontan队列中识别出预后不同的亚组。
这项单中心回顾性研究使用了2005年1月至2011年5月期间503例Fontan患者(中位年龄15岁)和42例年龄匹配对照的CMR研究。对短轴电影图像进行特征跟踪,评估径向和圆周应变、应变率及位移。将无监督K均值聚类应用于从这些形变测量得出的24个机械不同步指标。比较各聚类在人口统计学、解剖学以及死亡或心脏移植复合结局方面的情况。
识别出四个不同的表型聚类。在中位随访4.2年(四分位间距1.7 - 8.8年)期间,58例(11.5%)患者达到复合结局。在控制心室形态的情况下,最高风险聚类(主要由右心室或混合心室形态以及扩张、不同步的心室组成)与最低风险聚类相比,复合结局的风险更高(风险比[HR] 6.4;95%置信区间[CI] 2.1 - 19.3;P值0.001),且每10 mL/m的指数化舒张末期容积更高(HR 3.2;95% CI 1.04 - 10.0;P值0.043)。
使用基于CMR得出的不同步指标进行无监督机器学习,识别出了Fontan循环患者和健康对照的四个不同聚类,其临床特征和风险概况各异。该技术可用于指导未来研究,并从整体异质性人群中识别出更具同质性的患者亚组。