Department of Restorative Dentistry and Periodontology, University of Pécs, 5 Dischka Győző Street, Pécs H-7621, Hungary.
Department of General and Physical Chemistry, University of Pécs, 6 Ifjúság Street, Pécs H-7624, Hungary; János Szentágothai Research Center, 20 Ifjúság Street, Pécs H-7624, Hungary.
Dent Mater. 2021 Jun;37(6):983-997. doi: 10.1016/j.dental.2021.02.013. Epub 2021 Mar 10.
Determine the degree of conversion (DC) and in vitro pulpal temperature (PT) rise of low-viscosity (LV) and high-viscosity (HV) conventional resin-based composites (RBC), bulk-fill and short-fibre reinforced composites (SFRC).
The occlusal surface of a mandibular molar was removed to obtain dentine thickness of 2 mm above the roof of the pulp chamber. LV and HV conventional (2 mm), bulk-fill RBCs (2-4 mm) and SFRCs (2-4 mm) were applied in a mold (6 mm inner diameter) placed on the occlusal surface. PT changes during the photo-polymerization were recorded with a thermocouple positioned in the pulp chamber. The DC at the top and bottom of the samples was measured with micro-Raman spectroscopy. ANOVA and Tukey's post-hoc test, multivariate analysis and partial eta-squared statistics were used to analyze the data (p < 0.05).
The PT changes ranged between 5.5-11.2 °C. All LV and 4 mm RBCs exhibited higher temperature changes. Higher DC were measured at the top (63-76%) of the samples as compared to the bottom (52-72.6%) in the 2 mm HV conventional and bulk-fill RBCs and in each 4 mm LV and HV materials. The SFRCs showed higher temperature changes and DC% as compared to the other investigated RBCs. The temperature and DC were influenced by the composition of the material followed by the thickness.
Exothermic temperature rise and DC are mainly material dependent. Higher DC values are associated with a significant increase in PT. LV RBCs, 4 mm bulk-fills and SFRCs exhibited higher PTs. Bulk-fills and SFRCs applied in 4 mm showed lower DCs at the bottom.
确定低粘度(LV)和高粘度(HV)传统树脂基复合材料(RBC)、块状填充和短纤维增强复合材料(SFRC)的转化率(DC)和体外牙髓温度(PT)升高。
去除下颌磨牙的咬合面,以获得牙髓腔顶上方 2 毫米的牙本质厚度。将 LV 和 HV 传统(2 毫米)、块状填充 RBC(2-4 毫米)和 SFRC(2-4 毫米)应用于放置在咬合面上的模具(6 毫米内径)中。用置于牙髓腔中的热电偶记录光聚合过程中的 PT 变化。用微拉曼光谱法测量样品顶部和底部的 DC。使用方差分析和 Tukey 事后检验、多变量分析和偏 eta 平方统计分析数据(p < 0.05)。
PT 变化范围在 5.5-11.2°C 之间。所有 LV 和 4 毫米 RBC 均表现出更高的温度变化。与 2 毫米 HV 传统和块状填充 RBC 以及每个 4 毫米 LV 和 HV 材料的底部(52-72.6%)相比,样品顶部(63-76%)测量到的 DC 更高。与其他研究的 RBC 相比,SFRC 表现出更高的温度变化和 DC%。温度和 DC 主要受材料组成的影响,其次是厚度。
放热温升和 DC 主要取决于材料。更高的 DC 值与 PT 的显著增加相关。LV RBC、4 毫米块状填充和 SFRC 表现出更高的 PT。4 毫米应用的块状填充和 SFRC 显示底部的 DC 较低。