Zhang Yan, Zhang Yang, Ramström Olof
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China.
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China.
Catal Rev Sci Eng. 2020;62(1):66-95. doi: 10.1080/01614940.2019.1664031. Epub 2019 Sep 11.
Implemented with the highly efficient concept of (DKR), dynamic covalent chemistry can be a useful strategy for the synthesis of enantioenriched compounds. This gives rise to (DCKR), a subset of DKR that over the last decades has emerged as increasingly fruitful, with many applications in asymmetric synthesis and catalysis. All DKR protocols are composed of two important parts: substrate racemization and asymmetric transformation, which can lead to yields of >50% with good enantiomeric excesses (ee) of the products. In DCKR systems, by utilizing reversible covalent reactions as the racemization strategy, the substrate enantiomers can be easily interconverted without the presence of any racemase or transition metal catalyst. Enzymes or other chiral catalysts can then be adopted for the resolution step, leading to products with high enantiopurities. This tutorial review focuses on the development of DCKR systems, based on different reversible reactions, and their applications in asymmetric synthesis.
动态共价化学基于高效的动态动力学拆分(DKR)概念实施,可成为合成对映体富集化合物的有用策略。由此产生了动态动力学拆分(DCKR),它作为DKR的一个子集,在过去几十年中越来越富有成效,在不对称合成和催化中有许多应用。所有DKR方案都由两个重要部分组成:底物外消旋化和不对称转化,这可以使产物的产率>50%,对映体过量(ee)良好。在DCKR体系中,通过利用可逆共价反应作为外消旋化策略,底物对映体可以在不存在任何消旋酶或过渡金属催化剂的情况下轻松相互转化。然后可以采用酶或其他手性催化剂进行拆分步骤,从而得到高对映体纯度的产物。本教程综述重点介绍了基于不同可逆反应的DCKR体系的发展及其在不对称合成中的应用。