School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
Acc Chem Res. 2022 Dec 6;55(23):3362-3375. doi: 10.1021/acs.accounts.2c00572. Epub 2022 Nov 7.
Atropisomeric compounds are found extensively as natural products, as ligands for asymmetric transition-metal catalysis, and increasingly as bioactive and pharmaceutically relevant targets. Their enantioselective synthesis is therefore an important ongoing research target. While a vast majority of known atropisomeric structures are (hetero)biaryls, which display hindered rotation around a C-C single bond, our group's long-standing interest in the control of molecular conformation has led to the identification and stereoselective preparation of a variety of other classes of "nonbiaryl" atropisomeric compounds displaying restricted rotation around C-C, C-N, C-O, and C-S single bonds.Biocatalytic transformations are finding increasing application in both academic and industrial contexts as a result of a significant broadening of the range of biocatalytic reactions and sources of enzymes available to the synthetic chemist. In this Account, we summarize the main biocatalytic strategies currently available for the asymmetric synthesis of biaryl, heterobiaryl, and nonbiaryl atropisomers. As is the case with more traditional synthetic approaches to these compounds, most biocatalytic methodologies for the construction of enantioenriched atropisomers follow one of two distinct strategies. The first of these is the direct asymmetric construction of atropisomeric bonds. Synthetically applicable biocatalytic methodologies for this type of transformation are limited, despite the extensive research into the biosynthesis of (hetero)biaryls by oxidative homocoupling or cross-coupling of electron-rich arenes. The second of these is the asymmetric transformation of a molecule in which the bond that will form the axis already exists, and this approach represents the majority of biocatalytic strategies available to the synthetic organic chemist. This strategy encompasses a variety of stereoselective techniques including kinetic resolution (KR), desymmetrization, dynamic kinetic resolution (DKR), and dynamic kinetic asymmetric transformation (DYKAT).Nondynamic kinetic resolution (KR) of conformationally stable biaryl derivatives has provided the earliest and most numerous examples of synthetically useful methodologies for the enantioselective preparation of atropisomeric compounds. Lipases (i.e., enzymes that mediate the formation or hydrolysis of esters) are particularly effective and have attracted broad attention. This success has led researchers to broaden the scope of lipase-mediated transformations to desymmetrization reactions, in addition to a limited number of DKR and DYKAT examples. By contrast, our group has used redox enzymes, including an engineered galactose oxidase (GOase) and commercially available ketoreductases (KREDs), to desymmetrize prochiral atropisomeric diaryl ether and biaryl derivatives. Building on this experience and our long-standing interest in dynamic conformational processes, we later harnessed intramolecular noncovalent interactions to facilitate bond rotation at ambient temperatures, which allowed the development of the efficient DKR of heterobiaryl aldehydes using KREDs. With this Account we provide an overview of the current and prospective biocatalytic strategies available to the synthetic organic chemist for the enantioselective preparation of atropisomeric molecules.
手性化合物广泛存在于天然产物、不对称过渡金属催化配体中,并且越来越多地成为生物活性和药物相关的靶标。因此,它们的对映选择性合成是一个重要的研究目标。虽然绝大多数已知的手性化合物结构是(杂)联芳烃,它们在 C-C 单键处显示出受阻旋转,但我们小组对分子构象控制的长期兴趣导致了各种其他类别的“非联芳烃”手性化合物的鉴定和立体选择性制备,这些化合物在 C-C、C-N、C-O 和 C-S 单键处显示出受限旋转。由于生物催化反应的范围以及合成化学家可用的酶源显著扩大,生物催化转化在学术和工业环境中得到了越来越多的应用。在本报告中,我们总结了目前用于不对称合成联芳烃、杂联芳烃和非联芳烃手性化合物的主要生物催化策略。与这些化合物的更传统合成方法一样,大多数用于构建对映体富集的手性化合物的生物催化方法遵循两种截然不同的策略之一。第一种是直接不对称构建手性键。尽管人们对通过氧化偶联或电子富芳环的交叉偶联来生物合成(杂)联芳烃进行了广泛的研究,但对于这种类型的转化的合成应用生物催化方法仍然有限。第二种是在手性化合物中不对称转化已经存在的键,这种方法代表了合成有机化学家可获得的大多数生物催化策略。这种策略包括各种立体选择性技术,包括动力学拆分 (KR)、去对称化、动态动力学拆分 (DKR) 和动态动力学不对称转化 (DYKAT)。构象稳定的联芳烃衍生物的非动态动力学拆分 (KR) 提供了最早和最多数量的用于对映选择性制备手性化合物的合成有用方法的例子。脂肪酶(即介导酯的形成或水解的酶)特别有效,并引起了广泛关注。这一成功促使研究人员将脂肪酶介导的转化扩展到去对称化反应,以及少数 DKR 和 DYKAT 例子。相比之下,我们小组使用了氧化还原酶,包括工程化的半乳糖氧化酶 (GOase) 和市售的酮还原酶 (KRED),来不对称拆分前手性的手性芳基醚和联芳烃衍生物。在此基础上,基于我们的经验和我们对动态构象过程的长期兴趣,我们后来利用分子内非共价相互作用来促进室温下的键旋转,这使得使用 KRED 高效地进行 DKR 成为可能。通过本报告,我们提供了对合成有机化学家用于对映选择性制备手性分子的当前和潜在的生物催化策略的概述。