Guan Yawen, Johnson Margaret C, Katzfuss Matthias, Mannshardt Elizabeth, Messier Kyle P, Reich Brian J, Song Joon Jin
University of Nebraska.
North Carolina State University.
J Am Stat Assoc. 2020;115(531):1111-1124. doi: 10.1080/01621459.2019.1665526. Epub 2019 Oct 9.
People are increasingly concerned with understanding their personal environment, including possible exposure to harmful air pollutants. In order to make informed decisions on their day-to-day activities, they are interested in real-time information on a localized scale. Publicly available, fine-scale, high-quality air pollution measurements acquired using mobile monitors represent a paradigm shift in measurement technologies. A methodological framework utilizing these increasingly fine-scale measurements to provide real-time air pollution maps and short-term air quality forecasts on a fine-resolution spatial scale could prove to be instrumental in increasing public awareness and understanding. The Google Street View study provides a unique source of data with spatial and temporal complexities, with the potential to provide information about commuter exposure and hot spots within city streets with high traffic. We develop a computationally efficient spatiotemporal model for these data and use the model to make short-term forecasts and high-resolution maps of current air pollution levels. We also show via an experiment that mobile networks can provide more nuanced information than an equally-sized fixed-location network. This modeling framework has important real-world implications in understanding citizens' personal environments, as data production and real-time availability continue to be driven by the ongoing development and improvement of mobile measurement technologies.
人们越来越关注了解他们的个人环境,包括可能接触有害空气污染物的情况。为了在日常活动中做出明智的决策,他们对局部范围内的实时信息感兴趣。使用移动监测器获取的公开、精细尺度、高质量的空气污染测量数据代表了测量技术的范式转变。利用这些日益精细的测量数据在高分辨率空间尺度上提供实时空气污染地图和短期空气质量预报的方法框架,可能有助于提高公众意识和理解。谷歌街景研究提供了一个具有时空复杂性的独特数据源,有可能提供有关通勤者暴露情况以及交通繁忙的城市街道内热点区域的信息。我们为这些数据开发了一种计算效率高的时空模型,并使用该模型进行当前空气污染水平的短期预报和高分辨率地图绘制。我们还通过一项实验表明,移动网络能够提供比同等规模的固定位置网络更细致入微的信息。随着数据生产和实时可用性继续由移动测量技术的不断发展和改进所推动,这种建模框架对于理解公民的个人环境具有重要的现实意义。