Suppr超能文献

利用谷歌街景车辆上的移动监测器进行精细尺度的时空空气污染分析。

Fine-scale spatiotemporal air pollution analysis using mobile monitors on Google Street View vehicles.

作者信息

Guan Yawen, Johnson Margaret C, Katzfuss Matthias, Mannshardt Elizabeth, Messier Kyle P, Reich Brian J, Song Joon Jin

机构信息

University of Nebraska.

North Carolina State University.

出版信息

J Am Stat Assoc. 2020;115(531):1111-1124. doi: 10.1080/01621459.2019.1665526. Epub 2019 Oct 9.

Abstract

People are increasingly concerned with understanding their personal environment, including possible exposure to harmful air pollutants. In order to make informed decisions on their day-to-day activities, they are interested in real-time information on a localized scale. Publicly available, fine-scale, high-quality air pollution measurements acquired using mobile monitors represent a paradigm shift in measurement technologies. A methodological framework utilizing these increasingly fine-scale measurements to provide real-time air pollution maps and short-term air quality forecasts on a fine-resolution spatial scale could prove to be instrumental in increasing public awareness and understanding. The Google Street View study provides a unique source of data with spatial and temporal complexities, with the potential to provide information about commuter exposure and hot spots within city streets with high traffic. We develop a computationally efficient spatiotemporal model for these data and use the model to make short-term forecasts and high-resolution maps of current air pollution levels. We also show via an experiment that mobile networks can provide more nuanced information than an equally-sized fixed-location network. This modeling framework has important real-world implications in understanding citizens' personal environments, as data production and real-time availability continue to be driven by the ongoing development and improvement of mobile measurement technologies.

摘要

人们越来越关注了解他们的个人环境,包括可能接触有害空气污染物的情况。为了在日常活动中做出明智的决策,他们对局部范围内的实时信息感兴趣。使用移动监测器获取的公开、精细尺度、高质量的空气污染测量数据代表了测量技术的范式转变。利用这些日益精细的测量数据在高分辨率空间尺度上提供实时空气污染地图和短期空气质量预报的方法框架,可能有助于提高公众意识和理解。谷歌街景研究提供了一个具有时空复杂性的独特数据源,有可能提供有关通勤者暴露情况以及交通繁忙的城市街道内热点区域的信息。我们为这些数据开发了一种计算效率高的时空模型,并使用该模型进行当前空气污染水平的短期预报和高分辨率地图绘制。我们还通过一项实验表明,移动网络能够提供比同等规模的固定位置网络更细致入微的信息。随着数据生产和实时可用性继续由移动测量技术的不断发展和改进所推动,这种建模框架对于理解公民的个人环境具有重要的现实意义。

相似文献

引用本文的文献

2
A Mechanistic Model of Annual Sulfate Concentrations in the United States.美国年度硫酸盐浓度的机理模型。
J Am Stat Assoc. 2022;117(539):1082-1093. doi: 10.1080/01621459.2022.2027774. Epub 2022 Mar 17.

本文引用的文献

6
The changing paradigm of air pollution monitoring.大气污染监测的变革模式。
Environ Sci Technol. 2013 Oct 15;47(20):11369-77. doi: 10.1021/es4022602. Epub 2013 Oct 3.
7
Indoor aerosols: from personal exposure to risk assessment.室内气溶胶:从个人暴露到风险评估
Indoor Air. 2013 Dec;23(6):462-87. doi: 10.1111/ina.12044. Epub 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验