Suppr超能文献

在模拟的和不确定的物理过程干扰下,发电厂排放控制对健康的因果影响

CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE.

作者信息

Wikle Nathan B, Zigler Corwin M

机构信息

Department of Statistics and Actuarial Science, University of Iowa.

Department of Biostatistics, Brown University School of Public Health.

出版信息

Ann Appl Stat. 2024 Dec;18(4):2753-2774. doi: 10.1214/24-aoas1904. Epub 2024 Oct 31.

Abstract

Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and nonlocal treatment. This is especially relevant when estimating the effect of power plant emissions controls on population health, as pollution exposure is dictated by: (i) the location of point-source emissions as well as (ii) the transport of pollutants across space via dynamic physical-chemical processes. In this work we estimate the effectiveness of air quality interventions at coal-fired power plants in reducing two adverse health outcomes in Texas in 2016: pediatric asthma ED visits and Medicare all-cause mortality. We develop methods for causal inference with interference when the underlying network structure is not known with certainty and instead must be estimated from ancillary data. Notably, uncertainty in the interference structure is propagated to the resulting causal effect estimates. We offer a Bayesian, spatial mechanistic model for the interference mapping, which we combine with a flexible nonparametric outcome model to marginalize estimates of causal effects over uncertainty in the structure of interference. our analysis finds some evidence that emissions controls at upwind power plants reduce asthma ED visits and all-cause mortality; however, accounting for uncertainty in the interference renders the results largely inconclusive.

摘要

由于存在干扰,利用空间环境数据进行因果推断往往具有挑战性:观测单位的结果取决于局部和非局部处理的某种组合。在估计发电厂排放控制对人群健康的影响时,这一点尤为重要,因为污染暴露取决于:(i)点源排放的位置以及(ii)污染物通过动态物理化学过程在空间中的传输。在这项工作中,我们估计了2016年德克萨斯州燃煤发电厂空气质量干预措施在减少两种不良健康结果方面的有效性:儿科哮喘急诊就诊和医疗保险全因死亡率。当潜在的网络结构不确定且必须从辅助数据中估计时,我们开发了用于有干扰情况下因果推断的方法。值得注意的是,干扰结构中的不确定性会传播到最终的因果效应估计中。我们提供了一个用于干扰映射的贝叶斯空间机制模型,将其与灵活的非参数结果模型相结合,以在干扰结构的不确定性上对因果效应估计进行边缘化。我们的分析发现了一些证据,表明上风发电厂的排放控制减少了哮喘急诊就诊和全因死亡率;然而,考虑到干扰中的不确定性,结果在很大程度上尚无定论。

相似文献

7
Bayesian nonparametric adjustment of confounding.贝叶斯非参数混杂调整。
Biometrics. 2023 Dec;79(4):3252-3265. doi: 10.1111/biom.13833. Epub 2023 Feb 16.
8
Bipartite Causal Inference with Interference.具有干扰的二分因果推断
Stat Sci. 2021 Feb;36(1):109-123. doi: 10.1214/19-sts749. Epub 2020 Dec 21.
9

本文引用的文献

1
Mortality risk from United States coal electricity generation.美国煤电生产的死亡率风险。
Science. 2023 Nov 24;382(6673):941-946. doi: 10.1126/science.adf4915. Epub 2023 Nov 23.
3
A Mechanistic Model of Annual Sulfate Concentrations in the United States.美国年度硫酸盐浓度的机理模型。
J Am Stat Assoc. 2022;117(539):1082-1093. doi: 10.1080/01621459.2022.2027774. Epub 2022 Mar 17.
5
Air pollution and lung function in children.空气污染与儿童肺功能
J Allergy Clin Immunol. 2021 Jul;148(1):1-14. doi: 10.1016/j.jaci.2021.05.006.
6
Bipartite Causal Inference with Interference.具有干扰的二分因果推断
Stat Sci. 2021 Feb;36(1):109-123. doi: 10.1214/19-sts749. Epub 2020 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验