Thompson Geoffrey Z, Maitra Ranjan, Meeker William Q, Bastawros Ashraf F
Iowa State University, Ames, Iowa, USA.
J Comput Graph Stat. 2020;29(3):668-674. doi: 10.1080/10618600.2019.1696208. Epub 2020 Jan 22.
Matrix-variate distributions can intuitively model the dependence structure of matrix-valued observations that arise in applications with multivariate time series, spatio-temporal or repeated measures. This paper develops an Expectation-Maximization algorithm for discriminant analysis and classification with matrix-variate -distributions. The methodology shows promise on simulated datasets or when applied to the forensic matching of fractured surfaces or the classification of functional Magnetic Resonance, satellite or hand gestures images.
矩阵变量分布可以直观地对矩阵值观测的依赖结构进行建模,这些观测值出现在多元时间序列、时空或重复测量的应用中。本文开发了一种用于判别分析和分类的期望最大化算法,该算法基于矩阵变量分布。该方法在模拟数据集上或应用于断裂表面的法医匹配、功能磁共振、卫星或手势图像的分类时显示出前景。