Suppr超能文献

同时进行矩阵变量数据的差异网络分析和分类及其在脑连接中的应用。

Simultaneous differential network analysis and classification for matrix-variate data with application to brain connectivity.

机构信息

School of Statistics, Shandong University of Finance and Economics, Jinan, 250014, China.

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

出版信息

Biostatistics. 2022 Jul 18;23(3):967-989. doi: 10.1093/biostatistics/kxab007.

Abstract

Growing evidence has shown that the brain connectivity network experiences alterations for complex diseases such as Alzheimer's disease (AD). Network comparison, also known as differential network analysis, is thus particularly powerful to reveal the disease pathologies and identify clinical biomarkers for medical diagnoses (classification). Data from neurophysiological measurements are multidimensional and in matrix-form. Naive vectorization method is not sufficient as it ignores the structural information within the matrix. In the article, we adopt the Kronecker product covariance matrices framework to capture both spatial and temporal correlations of the matrix-variate data while the temporal covariance matrix is treated as a nuisance parameter. By recognizing that the strengths of network connections may vary across subjects, we develop an ensemble-learning procedure, which identifies the differential interaction patterns of brain regions between the case group and the control group and conducts medical diagnosis (classification) of the disease simultaneously. Simulation studies are conducted to assess the performance of the proposed method. We apply the proposed procedure to the functional connectivity analysis of an functional magnetic resonance imaging study on AD. The hub nodes and differential interaction patterns identified are consistent with existing experimental studies, and satisfactory out-of-sample classification performance is achieved for medical diagnosis of AD.

摘要

越来越多的证据表明,大脑连接网络在阿尔茨海默病(AD)等复杂疾病中会发生改变。因此,网络比较(也称为差异网络分析)特别强大,可以揭示疾病的病理,并为医学诊断(分类)识别临床生物标志物。神经生理学测量数据是多维的,呈矩阵形式。由于原始的向量化方法忽略了矩阵中的结构信息,因此效果不佳。在本文中,我们采用 Kronecker 积协方差矩阵框架来捕捉矩阵变量数据的空间和时间相关性,同时将时间协方差矩阵视为干扰参数。通过认识到网络连接的强度可能因个体而异,我们开发了一种集成学习程序,该程序可以识别病例组和对照组之间大脑区域的差异相互作用模式,并同时进行疾病的医学诊断(分类)。我们进行了模拟研究来评估所提出方法的性能。我们将所提出的程序应用于 AD 的功能磁共振成像研究的功能连接分析。所识别的枢纽节点和差异相互作用模式与现有实验研究一致,并在 AD 的医学诊断中实现了令人满意的样本外分类性能。

相似文献

本文引用的文献

2
Classification with the matrix-variate- distribution.基于矩阵变量分布的分类。
J Comput Graph Stat. 2020;29(3):668-674. doi: 10.1080/10618600.2019.1696208. Epub 2020 Jan 22.
6
A difference degree test for comparing brain networks.比较脑网络的差异度检验。
Hum Brain Mapp. 2019 Oct 15;40(15):4518-4536. doi: 10.1002/hbm.24718. Epub 2019 Jul 26.
7
Sparse quadratic classification rules via linear dimension reduction.通过线性降维的稀疏二次分类规则
J Multivar Anal. 2019 Jan;169:278-299. doi: 10.1016/j.jmva.2018.09.011. Epub 2018 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验