Tao Yunwen, Zou Wenli, Nanayakkara Sadisha, Freindorf Marek, Kraka Elfi
Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314 USA.
Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, 710127 Shaanxi People's Republic of China.
Theor Chem Acc. 2021;140(3):31. doi: 10.1007/s00214-021-02727-y. Epub 2021 Mar 9.
In this work, a simplified formulation of our recently developed generalized subsystem vibrational analysis (GSVA) for obtaining intrinsic fragmental vibrations (J Chem Theory Comput 14:2558, 2018) is presented. In contrast to the earlier implementation, which requires the explicit definition of a non-redundant set of internal coordinate parameters to be constructed for the subsystem, the new implementation circumvents this process by employing massless Eckart conditions to the subsystem fragment paired with a Gram-Schmidt orthogonalization to span the same internal vibration space indirectly. This revised version of GSVA (rev-GSVA) can be applied to equilibrium structure as well as transition state structure, and it has been incorporated into the open-source package UniMoVib (https://github.com/zorkzou/UniMoVib).
The online version contains supplementary material available at 10.1007/s00214-021-02727-y.
在这项工作中,我们提出了一种简化的公式,用于我们最近开发的广义子系统振动分析(GSVA),以获得固有片段振动(《化学理论与计算杂志》14:2558,2018)。与早期的实现方式不同,早期实现方式需要为子系统构建一组明确的非冗余内部坐标参数定义,而新的实现方式通过对子系统片段采用无质量埃卡特条件并结合格拉姆-施密特正交化来间接跨越相同的内部振动空间,从而规避了这一过程。这种修订版的GSVA(rev-GSVA)可应用于平衡结构以及过渡态结构,并且已被纳入开源软件包UniMoVib(https://github.com/zorkzou/UniMoVib)。
在线版本包含可在10.1007/s00214-021-02727-y获取的补充材料。