Suppr超能文献

基于模型的自由呼吸心脏磁共振成像重建,采用深度学习和风暴先验:MODL-STORM

MODEL-BASED FREE-BREATHING CARDIAC MRI RECONSTRUCTION USING DEEP LEARNED & STORM PRIORS: MODL-STORM.

作者信息

Biswas Sampurna, Aggarwal Hemant K, Poddar Sunrita, Jacob Mathews

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, IA, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:6533-6537. doi: 10.1109/icassp.2018.8462637. Epub 2018 Sep 13.

Abstract

We introduce a model-based reconstruction framework with deep learned (DL) and smoothness regularization on manifolds (STORM) priors to recover free breathing and ungated (FBU) cardiac MRI from highly undersampled measurements. The DL priors enable us to exploit the local correlations, while the STORM prior enables us to make use of the extensive non-local similarities that are subject dependent. We introduce a novel model-based formulation that allows the seamless integration of deep learning methods with available prior information, which current deep learning algorithms are not capable of. The experimental results demonstrate the preliminary potential of this work in accelerating FBU cardiac MRI.

摘要

我们引入了一种基于模型的重建框架,该框架具有深度学习(DL)和流形上的平滑正则化(STORM)先验,用于从高度欠采样的测量中恢复自由呼吸和非门控(FBU)心脏磁共振成像(MRI)。DL先验使我们能够利用局部相关性,而STORM先验使我们能够利用依赖于个体的广泛非局部相似性。我们引入了一种新颖的基于模型的公式,它允许将深度学习方法与可用的先验信息无缝集成,而这是当前深度学习算法无法做到的。实验结果证明了这项工作在加速FBU心脏MRI方面的初步潜力。

相似文献

3
Free-Breathing & Ungated Cardiac MRI Using Iterative SToRM (i-SToRM).自由呼吸和非门控心脏 MRI 使用迭代 SToRM(i-SToRM)。
IEEE Trans Med Imaging. 2019 Oct;38(10):2303-2313. doi: 10.1109/TMI.2019.2908140. Epub 2019 Mar 28.
4
MODEL BASED IMAGE RECONSTRUCTION USING DEEP LEARNED PRIORS (MODL).基于深度学习先验的模型图像重建(MODL)。
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:671-674. doi: 10.1109/isbi.2018.8363663. Epub 2018 May 24.
5
DYNAMIC MRI USING DEEP MANIFOLD SELF-LEARNING.使用深度流形自学习的动态磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1052-1055. doi: 10.1109/isbi45749.2020.9098382. Epub 2020 May 22.
6
DYNAMIC IMAGING USING DEEP BILINEAR UNSUPERVISED LEARNING (DEBLUR).使用深度双线性无监督学习(去模糊)的动态成像
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1099-1102. doi: 10.1109/isbi48211.2021.9433882. Epub 2021 May 25.
7
Dynamic Imaging Using Deep Bi-Linear Unsupervised Representation (DEBLUR).基于深度双线性无监督表示的动态成像(DEBLUR)。
IEEE Trans Med Imaging. 2022 Oct;41(10):2693-2703. doi: 10.1109/TMI.2022.3168559. Epub 2022 Sep 30.
8
DEEP GENERATIVE STORM MODEL FOR DYNAMIC IMAGING.用于动态成像的深度生成风暴模型
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433839. Epub 2021 Mar 25.
9
J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction.J-MoDL:基于联合模型的深度学习用于优化采样与重建
IEEE J Sel Top Signal Process. 2020 Oct;14(6):1151-1162. doi: 10.1109/jstsp.2020.3004094. Epub 2020 Jun 22.
10

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验