Suppr超能文献

基于模型的深度学习和 SToRM 先验的动态 MRI:MoDL-SToRM。

Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM.

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa.

出版信息

Magn Reson Med. 2019 Jul;82(1):485-494. doi: 10.1002/mrm.27706. Epub 2019 Mar 12.

Abstract

PURPOSE

To introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi-channel measurements.

METHODS

Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data.

RESULTS

The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time.

CONCLUSIONS

The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient-specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.

摘要

目的

介绍一种新的框架,将深度学习的先验知识与互补的图像正则化惩罚相结合,从高度欠采样的多通道测量中重建自由呼吸和无门控心脏 MRI 数据。

方法

图像恢复被公式化为一个优化问题,其中代价函数是数据一致性项、卷积神经网络(CNN)去噪先验和 SmooThness 正则化在流形上(SToRM)先验的总和,该先验利用数据集图像的流形结构。引入了一种交替使用 CNN 和 SToRM 对图像数据进行去噪以及最小化数据一致性代价的共轭梯度(CG)步骤的迭代算法。展开迭代算法会得到一个深度网络,该网络使用示例数据进行训练。

结果

实验结果表明,所提出的框架可以从每个切片少于 8.2s 的采集时间快速恢复自由呼吸和无门控心脏 MRI 数据。重建的图像质量与从 42s 采集时间的 SToRM 重建相当,扫描时间减少了五倍。

结论

结果表明,将深度学习的 CNN 先验与互补的图像正则化惩罚相结合具有优势。具体来说,这项工作表明,将利用局部和人群可推广冗余的 CNN 先验与利用心脏和呼吸模式等患者特定信息的 SToRM 相结合具有优势。所提出的框架促进了这种协同组合。

相似文献

2
Free-Breathing & Ungated Cardiac MRI Using Iterative SToRM (i-SToRM).自由呼吸和非门控心脏 MRI 使用迭代 SToRM(i-SToRM)。
IEEE Trans Med Imaging. 2019 Oct;38(10):2303-2313. doi: 10.1109/TMI.2019.2908140. Epub 2019 Mar 28.
4
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).基于流形平滑正则化的动态磁共振成像(SToRM)。
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
5
MODEL BASED IMAGE RECONSTRUCTION USING DEEP LEARNED PRIORS (MODL).基于深度学习先验的模型图像重建(MODL)。
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:671-674. doi: 10.1109/isbi.2018.8363663. Epub 2018 May 24.
6
Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model.基于深度生成式 SToRM(Gen-SToRM)模型的动态成像。
IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.
10
Dynamic Imaging Using Deep Bi-Linear Unsupervised Representation (DEBLUR).基于深度双线性无监督表示的动态成像(DEBLUR)。
IEEE Trans Med Imaging. 2022 Oct;41(10):2693-2703. doi: 10.1109/TMI.2022.3168559. Epub 2022 Sep 30.

引用本文的文献

4
Deep learning for accelerated and robust MRI reconstruction.深度学习在加速和稳健 MRI 重建中的应用。
MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23.
10
Deep Learning-Based Reconstruction for Cardiac MRI: A Review.基于深度学习的心脏磁共振成像重建:综述
Bioengineering (Basel). 2023 Mar 6;10(3):334. doi: 10.3390/bioengineering10030334.

本文引用的文献

1
MODEL BASED IMAGE RECONSTRUCTION USING DEEP LEARNED PRIORS (MODL).基于深度学习先验的模型图像重建(MODL)。
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:671-674. doi: 10.1109/isbi.2018.8363663. Epub 2018 May 24.
2
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
4
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
9
Deep Convolutional Neural Network for Inverse Problems in Imaging.基于深度卷积神经网络的医学影像反问题研究
IEEE Trans Image Process. 2017 Sep;26(9):4509-4522. doi: 10.1109/TIP.2017.2713099. Epub 2017 Jun 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验