Hesketh Andy, Bucca Giselda, Smith Colin P, Hong Hee-Jeon
School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.
Front Microbiol. 2021 Feb 25;12:641756. doi: 10.3389/fmicb.2021.641756. eCollection 2021.
Dalbavancin, vancomycin and chlorobiphenyl-vancomycin share a high degree of structural similarity and the same primary mode of drug action. All inhibit bacterial cell wall biosynthesis through complexation with intermediates in peptidoglycan biosynthesis mediated via interaction with peptidyl-d-alanyl-d-alanine (d-Ala-d-Ala) residues present at the termini of the intermediates. VanB-type glycopeptide resistance in bacteria encodes an inducible reprogramming of bacterial cell wall biosynthesis that generates precursors terminating with d-alanyl-d-lactate (d-Ala-d-Lac). This system in confers protection against the natural product vancomycin but not dalbavancin or chlorobiphenyl-vancomycin, which are semi-synthetic derivatives and fail to sufficiently activate the inducible VanB-type sensory response. We used transcriptome profiling by RNAseq to identify the gene expression signatures elucidated in in response to the three different glycopeptide compounds. An integrated comparison of the results defines both the contribution of the VanB resistance system to the control of changes in gene transcription and the impact at the transcriptional level of the structural diversity present in the glycopeptide antibiotics used. Dalbavancin induces markedly more extensive changes in the expression of genes required for transport processes, RNA methylation, haem biosynthesis and the biosynthesis of the amino acids arginine and glutamine. Chlorobiphenyl-vancomycin exhibits specific effects on tryptophan and calcium-dependent antibiotic biosynthesis and has a stronger repressive effect on translation. Vancomycin predictably has a uniquely strong effect on the genes controlled by the VanB resistance system and also impacts metal ion homeostasis and leucine biosynthesis. Leaderless gene transcription is disfavoured in the core transcriptional up- and down-regulation taking place in response to all the glycopeptide antibiotics, while HrdB-dependent transcripts are favoured in the down-regulated group. This study illustrates the biological impact of peripheral changes to glycopeptide antibiotic structure and could inform the design of future semi-synthetic glycopeptide derivatives.
达巴万星、万古霉素和氯联苯万古霉素具有高度的结构相似性和相同的主要药物作用模式。它们都通过与肽聚糖生物合成中间体络合来抑制细菌细胞壁生物合成,这种络合作用是通过与中间体末端存在的肽基 -d -丙氨酰 -d -丙氨酸(d - Ala - d - Ala)残基相互作用介导的。细菌中的VanB型糖肽抗性编码细菌细胞壁生物合成的诱导性重编程,产生以d - 丙氨酰 -d - 乳酸(d - Ala - d - Lac)结尾的前体。该系统赋予对天然产物万古霉素的抗性,但对达巴万星或氯联苯万古霉素没有抗性,因为它们是半合成衍生物,不能充分激活诱导性VanB型传感反应。我们使用RNAseq进行转录组分析,以鉴定在响应三种不同糖肽化合物时所阐明的基因表达特征。结果的综合比较确定了VanB抗性系统对基因转录变化控制的贡献以及所用糖肽抗生素中存在的结构多样性在转录水平上的影响。达巴万星在转运过程、RNA甲基化、血红素生物合成以及氨基酸精氨酸和谷氨酰胺生物合成所需基因的表达上诱导明显更广泛的变化。氯联苯万古霉素对色氨酸和钙依赖性抗生素生物合成具有特定影响,并且对翻译具有更强的抑制作用。万古霉素可预见地对由VanB抗性系统控制的基因具有独特的强烈影响,并且还影响金属离子稳态和亮氨酸生物合成。在响应所有糖肽抗生素时发生的核心转录上调和下调中,无 leader 基因转录不受青睐,而在下调组中HrdB依赖性转录本受青睐。这项研究说明了糖肽抗生素结构的外围变化的生物学影响,并可为未来半合成糖肽衍生物的设计提供参考。