Suppr超能文献

来自糖肽类抗生素产生菌的D-丙氨酰-D-丙氨酸连接酶与肠球菌万古霉素抗性连接酶VanA和VanB高度同源。

D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB.

作者信息

Marshall C G, Broadhead G, Leskiw B K, Wright G D

机构信息

Department of Biochemistry, McMaster University, 1200 Main Street West, Hamilton, ON, Canada, L8N 3Z5.

出版信息

Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6480-3. doi: 10.1073/pnas.94.12.6480.

Abstract

The crisis in antibiotic resistance has resulted in an increasing fear of the emergence of untreatable organisms. Resistance to the glycopeptide antibiotic vancomycin in the enterococci, and the spread of these pathogens throughout the environment, has shown that this scenario is a matter of fact rather than fiction. The basis for vancomycin resistance is the manufacture of the depsipeptide D-Ala-D-lactate, which is incorporated into the peptidoglycan cell wall in place of the vancomycin target D-Ala-D-Ala. Pivotal to the resistance mechanism is the production of a D-Ala-D-Ala ligase capable of ester formation. Two highly efficient depsipeptide ligases have been cloned from vancomycin-resistant enterococci: VanA and VanB. These ligases show high amino acid sequence similarity to each other ( approximately 75%), but less so to other D-Ala-D-X ligases (<30%). We have cloned ddls from two glycopeptide-producing organisms, the vancomycin producer Amycolatopsis orientalis and the A47934 producer Streptomyces toyocaensis. These ligases show strong predicted amino acid homology to VanA and VanB (>60%) but not to other D-Ala-D-X ligases (<35%). The D-Ala-D-Ala ligase from S. toyocaensis shows D-Ala-D-lactate synthase activity in cell-free extracts of S. lividans transformed with the ddl gene and confirms the predicted enzymatic activity. These results imply a close evolutionary relationship between resistance mechanisms in the clinics and in drug-producing bacteria.

摘要

抗生素耐药性危机导致人们越来越担心出现无法治疗的微生物。肠球菌对糖肽类抗生素万古霉素产生耐药性,且这些病原体在整个环境中传播,这表明这种情况已成为现实而非虚构。万古霉素耐药性的基础是制造脂肽D-Ala-D-乳酸,它被整合到肽聚糖细胞壁中,取代了万古霉素的作用靶点D-Ala-D-Ala。耐药机制的关键是能够形成酯的D-Ala-D-Ala连接酶的产生。已从耐万古霉素肠球菌中克隆出两种高效的脂肽连接酶:VanA和VanB。这些连接酶彼此之间显示出高度的氨基酸序列相似性(约75%),但与其他D-Ala-D-X连接酶的相似性较低(<30%)。我们从两种产生糖肽的生物体中克隆了ddls,即万古霉素产生菌东方拟无枝酸菌和A47934产生菌丰田链霉菌。这些连接酶与VanA和VanB显示出很强的预测氨基酸同源性(>60%),但与其他D-Ala-D-X连接酶的同源性较低(<35%)。丰田链霉菌的D-Ala-D-Ala连接酶在用ddl基因转化的变铅青链霉菌的无细胞提取物中显示出D-Ala-D-乳酸合酶活性,并证实了预测的酶活性。这些结果表明临床中的耐药机制与产药细菌中的耐药机制之间存在密切的进化关系。

相似文献

引用本文的文献

2
Sophisticated natural products as antibiotics.作为抗生素的复杂天然产物。
Nature. 2024 Aug;632(8023):39-49. doi: 10.1038/s41586-024-07530-w. Epub 2024 Jul 31.
4
A Resistance-Evading Antibiotic for Treating Anthrax.一种用于治疗炭疽的抗耐药性抗生素。
Res Sq. 2024 Mar 25:rs.3.rs-3991430. doi: 10.21203/rs.3.rs-3991430/v1.
6
Occurrence of and Related Genes beyond the Phylum.超越 门的 和相关基因的发生。
Genes (Basel). 2022 Oct 27;13(11):1960. doi: 10.3390/genes13111960.
7
The Bacterial Cell Wall: From Lipid II Flipping to Polymerization.细菌细胞壁:从脂质 II 翻转到聚合。
Chem Rev. 2022 May 11;122(9):8884-8910. doi: 10.1021/acs.chemrev.1c00773. Epub 2022 Mar 11.
9
Next-Generation Total Synthesis of Vancomycin.万古霉素的下一代全合成。
J Am Chem Soc. 2020 Sep 16;142(37):16039-16050. doi: 10.1021/jacs.0c07433. Epub 2020 Sep 4.

本文引用的文献

5
Avoparcin and animal feedstuff.阿伏帕星与动物饲料
Lancet. 1996 Jun 29;347(9018):1835. doi: 10.1016/s0140-6736(96)91654-2.
7
Vancomycin resistance and avoparcin.万古霉素耐药性与阿伏帕星
Lancet. 1996 May 18;347(9012):1412. doi: 10.1016/s0140-6736(96)91055-7.
8
Vancomycin resistance: time to ban avoparcin.万古霉素耐药性:是时候禁用阿伏帕星了。
Lancet. 1996 Apr 13;347(9007):1047. doi: 10.1016/s0140-6736(96)90187-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验