Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China.
Plant J. 2021 May;106(4):1148-1162. doi: 10.1111/tpj.15227. Epub 2021 Apr 12.
Industrial microalgae are promising photosynthetic cell factories, yet tools for large-scale targeted genome engineering are limited. Here for the model industrial oleaginous microalga Nannochloropsis oceanica, we established a method to precisely and serially delete large genome fragments of ~100 kb from its 30.01 Mb nuclear genome. We started by identifying the 'non-essential' chromosomal regions (i.e. low expression region or LER) based on minimal gene expression under N-replete and N-depleted conditions. The largest such LER (LER1) is ~98 kb in size, located near the telomere of the 502.09-kb-long Chromosome 30 (Chr 30). We deleted 81 kb and further distal and proximal deletions of up to 110 kb (21.9% of Chr 30) in LER1 by dual targeting the boundaries with the episome-based CRISPR/Cas9 system. The telomere-deletion mutants showed normal telomeres consisting of CCCTAA repeats, revealing telomere regeneration capability after losing the distal part of Chr 30. Interestingly, the deletions caused no significant alteration in growth, lipid production or photosynthesis (transcript-abundance change for < 3% genes under N depletion). We also achieved double-deletion of both LER1 and LER2 (from Chr 9) that total ~214 kb at maximum, which can result in slightly higher growth rate and biomass productivity than the wild-type. Therefore, loss of the large, yet 'non-essential' regions does not necessarily sacrifice important traits. Such serial targeted deletions of large genomic regions had not been previously reported in microalgae, and will accelerate crafting minimal genomes as chassis for photosynthetic production.
工业微藻是很有前途的光合细胞工厂,但大规模靶向基因组工程的工具却很有限。在这里,我们针对模式工业产油微藻东海小球藻,建立了一种从其 30.01Mb 核基因组中精确且连续缺失100kb 大片段基因组的方法。我们首先根据 N 充足和 N 缺乏条件下的最小基因表达来确定“非必需”的染色体区域(即低表达区域或 LER)。最大的此类 LER(LER1)大小约为 98kb,位于 502.09kb 长的染色体 30(Chr 30)的端粒附近。我们通过双靶点以基于附加体的 CRISPR/Cas9 系统靶向 LER1 的边界,缺失了 81kb 及其更远端和更靠近起点的 110kb(Chr 30 的 21.9%)。端粒缺失突变体显示出由 CCCTAA 重复组成的正常端粒,这表明在失去 Chr 30 的远端部分后,具有端粒再生能力。有趣的是,缺失没有导致生长、脂质产生或光合作用发生显著变化(N 缺乏时转录丰度变化<3%的基因)。我们还实现了 LER1 和 LER2(来自 Chr 9)的双缺失,最大程度可达到214kb,这可能导致比野生型稍高的生长速率和生物量生产力。因此,失去大片但“非必需”区域不一定会牺牲重要性状。在微藻中,以前没有报道过这种大规模靶向基因组区域的连续缺失,这将加速构建最小基因组作为光合生产的底盘。