Maritime Cultures Research Institute, Department of History, Archaeology, Arts, Philosophy and Ethics, Vrije Universiteit Brussel, Brussels, Belgium.
Research Unit Anthropology and Human Genetics, Faculty of Science, Université Libre de Bruxelles, Brussels, Belgium.
Am J Phys Anthropol. 2021 Aug;175(4):777-793. doi: 10.1002/ajpa.24270. Epub 2021 Mar 15.
This study aims to increase the rate of correctly sexed calcined individuals from archaeological and forensic contexts. This is achieved by evaluating sexual dimorphism of commonly used and new skeletal elements via uni- and multi-variate metric trait analyses.
Twenty-two skeletal traits were evaluated in 86 individuals from the William M. Bass donated cremated collection of known sex and age-at-death. Four different predictive models, logistic regression, random forest, neural network, and calculation of population specific cut-off points, were used to determine the classification accuracy (CA) of each feature and several combinations thereof.
An overall CA of ≥ 80% was obtained for 12 out of 22 features (humerus trochlea max., and lunate length, humerus head vertical diameter, humerus head transverse diameter, radius head max., femur head vertical diameter, patella width, patella thickness, and talus trochlea length) using univariate analysis. Multivariate analysis showed an increase of CA (≥ 95%) for certain combinations and models (e.g., humerus trochlea max. and patella thickness). Our study shows metric sexual dimorphism to be well preserved in calcined human remains, despite the changes that occur during burning.
Our study demonstrated the potential of machine learning approaches, such as neural networks, for multivariate analyses. Using these statistical methods improves the rate of correct sex estimations in calcined human remains and can be applied to highly fragmented unburnt individuals from both archaeological and forensic contexts.
本研究旨在提高考古学和法医学背景下正确鉴定煅烧个体性别的比例。这是通过对常用和新的骨骼元素进行单变量和多变量度量特征分析来实现的。
在已知性别和死亡时年龄的 86 名来自 William M. Bass 捐赠的火化个体中,评估了 22 个骨骼特征。使用逻辑回归、随机森林、神经网络和计算特定人群的截断值等四种不同的预测模型来确定每个特征及其组合的分类准确性(CA)。
在使用单变量分析时,有 12 个特征(肱骨滑车最大长度和月骨长度、肱骨头垂直直径、肱骨头横径、桡骨头最大直径、股骨头垂直直径、髌骨宽度、髌骨厚度和距骨滑车长度)的总体 CA 达到≥80%。多变量分析显示,某些组合和模型(例如肱骨滑车最大长度和髌骨厚度)的 CA 有所增加(≥95%)。我们的研究表明,尽管在燃烧过程中发生了变化,但煅烧后的人类遗骸仍能很好地保留形态性别差异。
我们的研究展示了机器学习方法(如神经网络)在多变量分析中的潜力。使用这些统计方法可以提高煅烧人类遗骸中正确性别鉴定的比例,并可应用于考古学和法医学背景下高度破碎的未燃烧个体。