Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA.
Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA.
J Biol Chem. 2021 Jan-Jun;296:100539. doi: 10.1016/j.jbc.2021.100539. Epub 2021 Mar 12.
Phosphatidylethanolamine (PE) is essential for mitochondrial respiration in yeast, Saccharomyces cerevisiae, whereas the most abundant mitochondrial phospholipid, phosphatidylcholine (PC), is largely dispensable. Surprisingly, choline (Cho), which is a biosynthetic precursor of PC, has been shown to rescue the respiratory growth of mitochondrial PE-deficient yeast; however, the mechanism underlying this rescue has remained unknown. Using a combination of yeast genetics, lipid biochemistry, and cell biological approaches, we uncover the mechanism by showing that Cho rescues mitochondrial respiration by partially replenishing mitochondrial PE levels in yeast cells lacking the mitochondrial PE-biosynthetic enzyme Psd1. This rescue is dependent on the conversion of Cho to PC via the Kennedy pathway as well as on Psd2, an enzyme catalyzing PE biosynthesis in the endosome. Metabolic labeling experiments reveal that in the absence of exogenously supplied Cho, PE biosynthesized via Psd2 is mostly directed to the methylation pathway for PC biosynthesis and is unavailable for replenishing mitochondrial PE in Psd1-deleted cells. In this setting, stimulating the Kennedy pathway for PC biosynthesis by Cho spares Psd2-synthesized PE from the methylation pathway and redirects it to the mitochondria. Cho-mediated elevation in mitochondrial PE is dependent on Vps39, which has been recently implicated in PE trafficking to the mitochondria. Accordingly, epistasis experiments placed Vps39 downstream of Psd2 in Cho-based rescue. Our work, thus, provides a mechanism of Cho-based rescue of mitochondrial PE deficiency and uncovers an intricate interorganelle phospholipid regulatory network that maintains mitochondrial PE homeostasis.
磷脂酰乙醇胺 (PE) 是酵母中线粒体呼吸所必需的,而最丰富的线粒体磷脂酰胆碱 (PC) 在很大程度上是可有可无的。令人惊讶的是,胆碱 (Cho) 是 PC 的生物合成前体,已被证明可以挽救线粒体 PE 缺乏酵母的呼吸生长;然而,这种挽救的机制仍然未知。通过使用酵母遗传学、脂质生物化学和细胞生物学方法的组合,我们揭示了这一机制,表明 Cho 通过部分补充缺乏线粒体 PE 生物合成酶 Psd1 的酵母细胞中的线粒体 PE 水平来挽救线粒体呼吸。这种挽救依赖于 Cho 通过 Kennedy 途径转化为 PC,以及 Psd2,一种在内涵体中催化 PE 生物合成的酶。代谢标记实验表明,在没有外源供应 Cho 的情况下,通过 Psd2 合成的 PE 主要定向用于 PC 生物合成的甲基化途径,并且无法用于补充 Psd1 缺失细胞中的线粒体 PE。在这种情况下,Cho 刺激 PC 生物合成的 Kennedy 途径可使 Psd2 合成的 PE 免于甲基化途径,并将其重新定向到线粒体。Cho 介导的线粒体 PE 升高依赖于 Vps39,最近该蛋白已被牵连到 PE 向线粒体的运输中。因此,基于表型的实验将 Vps39 置于 Cho 挽救中的 Psd2 下游。我们的工作因此提供了一种基于 Cho 的线粒体 PE 缺乏挽救的机制,并揭示了一种复杂的细胞器间磷脂调节网络,该网络维持线粒体 PE 的动态平衡。