Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
FEBS Lett. 2018 Apr;592(8):1273-1290. doi: 10.1002/1873-3468.12887. Epub 2017 Nov 9.
Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.
线粒体的结构和功能受到其膜中独特的磷脂组成的影响。虽然线粒体含有所有主要类型的磷脂,但最近的研究强调了非双层形成磷脂磷脂酰乙醇胺(PE)和心磷脂(CL)在组装和线粒体呼吸链(MRC)复合物活性中的特定作用。非双层磷脂是锥形分子,在双层膜中引入曲率应力,并已被证明影响线粒体融合和裂变。除了在这些线粒体过程中具有重叠的作用外,每种非双层磷脂在线粒体功能中也起着独特的作用;例如,CL 是 MRC 超复合物形成所必需的。最近发现了线粒体 PE 和 CL 转运蛋白,以及它们的生物合成途径的先前知识,为在体内精确操纵线粒体膜中非双层磷脂的水平提供了目标。因此,这些途径的遗传突变体可能是阐明非双层磷脂在驱动线粒体生物能学和动力学中的分子功能和生物物理性质的有价值的工具。