Suppr超能文献

非双层磷脂在线粒体结构和功能中的作用。

The role of nonbilayer phospholipids in mitochondrial structure and function.

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.

出版信息

FEBS Lett. 2018 Apr;592(8):1273-1290. doi: 10.1002/1873-3468.12887. Epub 2017 Nov 9.

Abstract

Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.

摘要

线粒体的结构和功能受到其膜中独特的磷脂组成的影响。虽然线粒体含有所有主要类型的磷脂,但最近的研究强调了非双层形成磷脂磷脂酰乙醇胺(PE)和心磷脂(CL)在组装和线粒体呼吸链(MRC)复合物活性中的特定作用。非双层磷脂是锥形分子,在双层膜中引入曲率应力,并已被证明影响线粒体融合和裂变。除了在这些线粒体过程中具有重叠的作用外,每种非双层磷脂在线粒体功能中也起着独特的作用;例如,CL 是 MRC 超复合物形成所必需的。最近发现了线粒体 PE 和 CL 转运蛋白,以及它们的生物合成途径的先前知识,为在体内精确操纵线粒体膜中非双层磷脂的水平提供了目标。因此,这些途径的遗传突变体可能是阐明非双层磷脂在驱动线粒体生物能学和动力学中的分子功能和生物物理性质的有价值的工具。

相似文献

3
Phospholipid ebb and flow makes mitochondria go.磷脂的盈亏使线粒体运转。
J Cell Biol. 2020 Aug 3;219(8). doi: 10.1083/jcb.202003131.
7
Cardiolipin and mitochondrial cristae organization.心磷脂与线粒体嵴的结构。
Biochim Biophys Acta Biomembr. 2017 Jun;1859(6):1156-1163. doi: 10.1016/j.bbamem.2017.03.013. Epub 2017 Mar 20.
8
Intramitochondrial phospholipid trafficking.线粒体内部磷脂转运。
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan;1862(1):81-89. doi: 10.1016/j.bbalip.2016.08.006. Epub 2016 Aug 16.
9
Cardiolipins and biomembrane function.心磷脂与生物膜功能。
Biochim Biophys Acta. 1992 Mar 26;1113(1):71-133. doi: 10.1016/0304-4157(92)90035-9.
10
Effects of lipids on mitochondrial functions.脂质对线粒体功能的影响。
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan;1862(1):102-113. doi: 10.1016/j.bbalip.2016.06.015. Epub 2016 Jun 24.

引用本文的文献

4
Molecular machineries shaping the mitochondrial inner membrane.塑造线粒体内膜的分子机制。
Nat Rev Mol Cell Biol. 2025 May 14. doi: 10.1038/s41580-025-00854-z.
5
Origin and evolution of mitochondrial inner membrane composition.线粒体内膜成分的起源与演化
J Cell Sci. 2025 May 1;138(9). doi: 10.1242/jcs.263780. Epub 2025 Apr 23.

本文引用的文献

2
Role of cardiolipin in stability of integral membrane proteins.心磷脂在整合膜蛋白稳定性中的作用。
Biochimie. 2017 Nov;142:102-111. doi: 10.1016/j.biochi.2017.08.013. Epub 2017 Aug 23.
4
Cardiolipin and mitochondrial cristae organization.心磷脂与线粒体嵴的结构。
Biochim Biophys Acta Biomembr. 2017 Jun;1859(6):1156-1163. doi: 10.1016/j.bbamem.2017.03.013. Epub 2017 Mar 20.
5
Cardiolipin Regulates Mitophagy through the Protein Kinase C Pathway.心磷脂通过蛋白激酶C途径调节线粒体自噬。
J Biol Chem. 2017 Feb 17;292(7):2916-2923. doi: 10.1074/jbc.M116.753574. Epub 2017 Jan 5.
6
Loss of Cardiolipin Leads to Perturbation of Acetyl-CoA Synthesis.心磷脂的缺失导致乙酰辅酶A合成紊乱。
J Biol Chem. 2017 Jan 20;292(3):1092-1102. doi: 10.1074/jbc.M116.753624. Epub 2016 Dec 9.
7
8
The architecture of respiratory supercomplexes.呼吸超级复合物的结构。
Nature. 2016 Sep 29;537(7622):644-648. doi: 10.1038/nature19774. Epub 2016 Sep 21.
9
Cell biology, physiology and enzymology of phosphatidylserine decarboxylase.磷脂酰丝氨酸脱羧酶的细胞生物学、生理学和酶学。
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan;1862(1):25-38. doi: 10.1016/j.bbalip.2016.09.007. Epub 2016 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验