Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany.
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany.
Metab Eng. 2021 May;65:66-78. doi: 10.1016/j.ymben.2021.03.006. Epub 2021 Mar 12.
The supply and usage of energetic cofactors in metabolism is a central concern for systems metabolic engineering, particularly in case of energy intensive products. One of the most important parameters for systems wide balancing of energetic cofactors is the ATP requirement for biomass formation Y. Despite its fundamental importance, Y values for non-fermentative organisms are still rough estimates deduced from theoretical considerations. For the first time, we present an approach for the experimental determination of Y using comparative C metabolic flux analysis (C MFA) of a wild type strain and an ATP synthase knockout mutant. We show that the energetic profile of a cell can then be deduced from a genome wide stoichiometric model and experimental maintenance data. Particularly, the contributions of substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP) to ATP generation become available which enables the overall energetic efficiency of a cell to be characterized. As a model organism, the industrial platform organism Corynebacterium glutamicum is used. C. glutamicum uses a respiratory type of energy metabolism, implying that ATP can be synthesized either by SLP or by ETP with the membrane-bound FF-ATP synthase using the proton motive force (pmf) as driving force. The presence of two terminal oxidases, which differ in their proton translocation efficiency by a factor of three, further complicates energy balancing for this organism. By integration of experimental data and network models, we show that in the wild type SLP and ETP contribute equally to ATP generation. Thus, the role of ETP in respiring bacteria may have been overrated in the past. Remarkably, in the genome wide setting 65% of the pmf is actually not used for ATP synthesis. However, it turns out that, compared to other organisms C. glutamicum still uses its energy budget rather efficiently.
代谢过程中能量辅助因子的供应和利用是系统代谢工程的核心关注点,尤其是在涉及到能源密集型产品的情况下。对于能量辅助因子的系统全面平衡,最重要的参数之一是生物量形成所需的 ATP(Y)。尽管 Y 值非常重要,但对于非发酵生物,它仍然是根据理论推导得出的粗略估计值。我们首次提出了一种使用比较 C 代谢通量分析(C MFA)来确定 Y 值的实验方法,该方法基于野生型菌株和 ATP 合酶敲除突变体。我们表明,可以从全基因组化学计量模型和实验维护数据中推断出细胞的能量分布。特别是,可以确定底物水平磷酸化(SLP)和电子传递磷酸化(ETP)对 ATP 生成的贡献,从而可以表征细胞的整体能量效率。作为模型生物,我们使用了工业平台生物谷氨酸棒杆菌。谷氨酸棒杆菌使用呼吸类型的能量代谢,这意味着 ATP 可以通过 SLP 或 ETP 生成,其中膜结合的 FF-ATP 合酶利用质子动力势(pmf)作为驱动力。两种末端氧化酶的存在进一步使该生物体的能量平衡复杂化,这两种末端氧化酶的质子转运效率差异为三倍。通过实验数据和网络模型的整合,我们表明在野生型中,SLP 和 ETP 对 ATP 生成的贡献相等。因此,过去可能高估了 ETP 在需氧细菌中的作用。值得注意的是,在全基因组环境中,实际上只有 65%的 pmf 用于 ATP 合成。然而,事实证明,与其他生物体相比,谷氨酸棒杆菌仍然相当有效地利用其能量预算。